你能告诉我一种对齐这些方程的方法吗?
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{enumerate}
\item \begin{align*}
\begin{multlined}[t][0.7\textwidth]
\langle x_{b}, t_{b}|x_{a}, t\rangle -\lim_{\epsilon\to 0} \left( \epsilon \frac{\partial}{\partial t}\langle x_{b}, t_{b}|x_{a}, t\rangle\ \right)\\
= \lim_{\epsilon\rightarrow 0} \frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\bigg(\langle x_{b}, t_{b}|x_{a}, t\rangle+\xi\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\\
+\frac{\xi^{2}}{2}\frac{\partial^{2}}{\partial x^{2}_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle-\frac{iV\epsilon}{\hbar}\langle x_{b}, t_{b}|x_{a}, t\rangle-\frac{iV\xi\epsilon}{\hbar}\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle-\frac{iV\xi^{2}\epsilon}{2\hbar}\frac{\partial^{2}}{\partial x^{2}_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle+\dots\bigg)\\
= \lim_{\epsilon\rightarrow 0} \bigg[\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
+\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \xi d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
+\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial^{2}}{\partial x_{a}^{2}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
-\frac{iV\epsilon}{\hbar}\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
-\frac{iV\epsilon}{\hbar}\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \xi d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
-\frac{iV\epsilon}{\hbar}\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial^{2}}{\partial x_{a}^{2}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)+\dots\bigg]
\end{multlined}\\
\end{align*}
\end{enumerate}
\end{document}
答案1
这是我能提供的;我会删除中间的步骤,这可以从最后一步轻松推断出来。
\documentclass{article}
\usepackage{amsmath,mathtools}
\newcommand{\pihem}{\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}}
\newcommand{\pder}[2][]{\frac{\partial^{#1}}{\partial#2^{#1}}}
\begin{document}
\begin{equation*}
\begin{split}
\mathrlap{
\langle x_{b}, t_{b}|x_{a}, t\rangle
-\lim_{\epsilon\to 0} \left( \epsilon \pder{t}\langle x_{b}, t_{b}|x_{a}, t\rangle \right)
}\quad&\\
&= \lim_{\epsilon\rightarrow 0}
\pihem \int_{-\infty}^{\infty} d\xi
\exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)
\\
&\qquad\times
\biggl(\begin{aligned}[t]
&\langle x_{b}, t_{b}|x_{a}, t\rangle+\xi\pder{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
\\
&+\frac{\xi^{2}}{2}\pder[2]{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
-\frac{iV\epsilon}{\hbar}\langle x_{b}, t_{b}|x_{a}, t\rangle
\\
&-\frac{iV\xi\epsilon}{\hbar}\pder{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
-\frac{iV\xi^{2}\epsilon}{2\hbar}\pder[2]{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
+\dotsb
\biggr)\end{aligned}
\\
&= \lim_{\epsilon\rightarrow 0}
\biggl[\begin{aligned}[t]
&\biggl(\pihem \int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi}{2\hbar\epsilon}\right)\langle x_{b}, t_{b}|x_{a}, t\rangle\biggr)\\
&+\biggl(\pihem \int_{-\infty}^{\infty} \xi d\xi \exp\left(\frac{im\xi}{2\hbar\epsilon}\right)\pder{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\biggr)\\
&+\biggl(\pihem \int_{-\infty}^{\infty} \frac{\xi}{2} d\xi \exp\left(\frac{im\xi}{2\hbar\epsilon}\right)\pder[2]{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\biggr)\\
&-\frac{iV\epsilon}{\hbar}\biggl(\pihem \int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\langle x_{b}, t_{b}|x_{a}, t\rangle\biggr)\\
&-\frac{iV\epsilon}{\hbar}\biggl(\pihem \int_{-\infty}^{\infty} \xi d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\pder{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\biggr)\\
&-\frac{iV\epsilon}{\hbar}\biggl(\pihem \int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\pder[2]{x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\biggr)+\dotsb
\biggr]\end{aligned}
\end{split}
\end{equation*}
\end{document}
请注意\bigg
应该是\biggl
或\biggr
。
这是没有中间步骤的。
答案2
在类似的情况下,我将在方程中引入一些新变量,并按以下方式写出它们:
\documentclass{article}
\usepackage{mathtools}
\usepackage{geometry}
\begin{document}
\begin{enumerate}
\item
\begin{align*}
\langle x_{b}, t_{b}|x_{a}, t\rangle
& -\lim_{\epsilon\to 0}\left(\epsilon\frac{\partial}{\partial t}\langle x_{b},t_{b}|x_{a}, t\rangle\ \right)\\
& \begin{multlined}[t][0.8\textwidth]
= \lim_{\epsilon\to 0}
\underbrace{\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}}_{=A}
\int_{-\infty}^{\infty} d\xi
\underbrace{\exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)}_{=B} \\
\bigg(\langle x_{b}, t_{b}|x_{a},
t\rangle+\xi\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
+ \frac{\xi^{2}}{2}\frac{\partial^{2}}{\partial x^{2}_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
-\frac{iV\epsilon}{\hbar}\langle x_{b}, t_{b}|x_{a}, t\rangle \\
-\frac{iV\xi\epsilon}{\hbar}\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
-\frac{iV\xi^{2}\epsilon}{2\hbar}\frac{\partial^{2}}{\partial x^{2}_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle+\dots\bigg)
\end{multlined} \\
& \begin{multlined}[t][0.8\textwidth]
= \lim_{\epsilon\to 0} \bigg[
A\int_{-\infty}^{\infty} d\xi B \langle x_{b}, t_{b}|x_{a}, t\rangle
+ A \int_{-\infty}^{\infty} \xi d\xi B
\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle \\
+ A \int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi B
\frac{\partial^{2}}{\partial x_{a}^{2}}\langle x_{b}, t_{b}|x_{a}, t\rangle
- \frac{iV\epsilon}{\hbar} A\int_{-\infty}^{\infty} d\xi B
\langle x_{b}, t_{b}|x_{a}, t\rangle \\
- \frac{iV\epsilon}{\hbar} A \int_{-\infty}^{\infty} \xi d\xi B
\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
-\frac{iV\epsilon}{\hbar} A \int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi B \frac{\partial^{2}}{\partial x_{a}^{2}}\langle x_{b}, t_{b}|x_{a}, t\rangle \\
+ \dots \bigg]
\end{multlined}
\end{align*}
\end{enumerate}
\end{document}
答案3
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{equation}
\begin{aligned}
\shoveleft \langle x_{b}, t_{b}|x_{a}, t\rangle -\lim_{\epsilon\to 0} \left( \epsilon \frac{\partial}{\partial t}\langle x_{b}, t_{b}|x_{a}, t\rangle\ \right)
\kern-15em\\
&= \lim_{\epsilon\rightarrow 0} \frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\bigg(\langle x_{b}, t_{b}|x_{a}, t\rangle\\
&\qquad+\xi\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle
+\frac{\xi^{2}}{2}\frac{\partial^{2}}{\partial x^{2}_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\\
&\qquad-\frac{iV\epsilon}{\hbar}\langle x_{b}, t_{b}|x_{a}, t\rangle-\frac{iV\xi\epsilon}{\hbar}\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\\
&\qquad-\frac{iV\xi^{2}\epsilon}{2\hbar}\frac{\partial^{2}}{\partial x^{2}_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle+\dots\bigg)\\
&= \lim_{\epsilon\rightarrow 0} \bigg[\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
& +\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \xi d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
& +\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial^{2}}{\partial x_{a}^{2}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
& -\frac{iV\epsilon}{\hbar}\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
& -\frac{iV\epsilon}{\hbar}\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \xi d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial}{\partial x_{a}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
& -\frac{iV\epsilon}{\hbar}\bigg(\frac{1}{\sqrt{2\pi i\hbar\epsilon/m}}\int_{-\infty}^{\infty} \frac{\xi^{2}}{2} d\xi \exp\left(\frac{im\xi^{2}}{2\hbar\epsilon}\right)\frac{\partial^{2}}{\partial x_{a}^{2}}\langle x_{b}, t_{b}|x_{a}, t\rangle\bigg)\\
&\qquad+\dots\bigg]
\end{aligned}
\end{equation}
\end{document}