我正在尝试为最近进行的测试编写解决方案。其中一个问题是“判断对错和证明”问题列表。
问题的 MWE:
\documentclass{article}
\usepackage{tkz-euclide}
\begin{document}
\begin{enumerate}
\item If $AM = MB$, then $M$ is the midpoint of $\overline{AB}$.\vfill
\item A right triangle cannot be isosceles.\vfill
\item The supplement of an acute angle is acute.\vfill
\end{enumerate}
\end{document}
我希望能够精确地保持垂直间距(即每个枚举项之间的空白量相同),但能够逐一查看并在每个答案后添加答案。我知道如果每个答案的垂直高度完全相同,那就没关系了,但如果它们不是(例如...)?
Not-Quite-Answers 的 MWE:
\documentclass{article}
\usepackage{tkz-euclide}
\begin{document}
\begin{enumerate}
\item If $AM = MB$, then $M$ is the midpoint of $\overline{AB}$.\\
False: For example, if $\triangle ABM$ is equilateral then $AM = MB$ but not the midpoint of $\overline{AB}$.
\begin{center}\begin{tikzpicture}[scale=2]\begin{scope}[thick]
\draw (0,0) node[below left] {$A$} -- (60:1) node[above] {$M$} -- (1,0) node[below right] {$B$} -- (0,0);
\draw (60:.5)++(-30:.1) -- ++(-30:-.2);
\draw (1,0)++(120:.5)++(30:.1) -- ++(30:-.2);
\draw (.5,.1) -- (.5,-.1);
\end{scope}\end{tikzpicture}\end{center}\vfill
\item A right triangle cannot be isosceles.\\
False: If a triangle has angles of measures $45^\circ$, $45^\circ$, and $90^\circ$, then the triangle is both isosceles and right.
\begin{center}\begin{tikzpicture}[scale=2]\begin{scope}[thick]
\draw (0,0) node[below left] {$C$} -- (0,1) node[above] {$A$} -- (1,0) node[below right] {$B$} -- (0,0);
\draw (0,0) rectangle (.2, .2);
\draw (-.1,.5) -- (.1,.5);
\draw (.5,.1) -- (.5,-.1);
\end{scope}\end{tikzpicture}\end{center}\vfill
\item The supplement of an acute angle is acute.\\
False: The supplement of $\angle A$ has measure $180^\circ - m\angle A$. If $\angle A$ is acute, then $m\angle A < 90^\circ$ and its supplement has measure $>90^\circ$, which means it is obtuse.\vfill
\end{enumerate}
\end{document}
答案1
编辑:多亏了这个答案我找到了一个更好的解决办法。
您可以使用如下定义的新命令:
\newcommand{\mysol}[1]{\phantom{\parbox{\linewidth}{#1}}}
对于学生版本,如下所示:
\newcommand{\mysol}[1]{#1}
供教师使用,您可以根据所打印的版本对其中一个版本进行评论。
代码如下:
\documentclass{article}
\newcommand{\mysol}[1]{\phantom{\parbox{\linewidth}{#1}}}% for student version
%\newcommand{\mysol}[1]{#1}% for teacher version
\usepackage{tkz-euclide}
\begin{document}
\begin{enumerate}
\item If $AM = MB$, then $M$ is the midpoint of $\overline{AB}$.\\
\mysol{False: For example, if $\triangle ABM$ is equilateral then $AM = MB$ but not the midpoint of $\overline{AB}$.
\begin{center}\begin{tikzpicture}[scale=2]\begin{scope}[thick]
\draw (0,0) node[below left] {$A$} -- (60:1) node[above] {$M$} -- (1,0) node[below right] {$B$} -- (0,0);
\draw (60:.5)++(-30:.1) -- ++(-30:-.2);
\draw (1,0)++(120:.5)++(30:.1) -- ++(30:-.2);
\draw (.5,.1) -- (.5,-.1);
\end{scope}\end{tikzpicture}\end{center}
}\vfill
\item A right triangle cannot be isosceles.\\
\mysol{False: If a triangle has angles of measures $45^\circ$, $45^\circ$, and $90^\circ$, then the triangle is both isosceles and right.
\begin{center}\begin{tikzpicture}[scale=2]\begin{scope}[thick]
\draw (0,0) node[below left] {$C$} -- (0,1) node[above] {$A$} -- (1,0) node[below right] {$B$} -- (0,0);
\draw (0,0) rectangle (.2, .2);
\draw (-.1,.5) -- (.1,.5);
\draw (.5,.1) -- (.5,-.1);
\end{scope}\end{tikzpicture}\end{center}}\vfill
\item The supplement of an acute angle is acute.\\
\mysol{False: The supplement of $\angle A$ has measure $180^\circ - m\angle A$. If $\angle A$ is acute, then $m\angle A < 90^\circ$ and its supplement has measure $>90^\circ$, which means it is obtuse.}\vfill
\end{enumerate}
\end{document}
学生版:
教师版:
上一个答案:\vspace{.3\textheight}
那么,对于空问题使用显式的 ,对于包含答案的版本使用相同高度的小页面 怎么样?这样可以吗?
\documentclass{article}
\usepackage{tkz-euclide}
\begin{document}
\begin{enumerate}
\item If $AM = MB$, then $M$ is the midpoint of $\overline{AB}$.\vspace{.3\textheight}
\item A right triangle cannot be isosceles.\vspace{.3\textheight}
\item The supplement of an acute angle is acute.\vspace{.3\textheight}
\end{enumerate}
\clearpage
\begin{enumerate}
\item If $AM = MB$, then $M$ is the midpoint of $\overline{AB}$.\\
\begin{minipage}[t][.3\textheight]{\linewidth}
False: For example, if $\triangle ABM$ is equilateral then $AM = MB$ but not the midpoint of $\overline{AB}$.
\begin{center}
\begin{tikzpicture}[scale=2]
\begin{scope}[thick]
\draw (0,0) node[below left] {$A$} -- (60:1) node[above] {$M$} -- (1,0) node[below right] {$B$} -- (0,0);
\draw (60:.5)++(-30:.1) -- ++(-30:-.2);
\draw (1,0)++(120:.5)++(30:.1) -- ++(30:-.2);
\draw (.5,.1) -- (.5,-.1);
\end{scope}
\end{tikzpicture}
\end{center}
\end{minipage}
\item A right triangle cannot be isosceles.\\
\begin{minipage}[t][.3\textheight]{\linewidth}
False: If a triangle has angles of measures $45^\circ$, $45^\circ$, and $90^\circ$, then the triangle is both isosceles and right.
\begin{center}
\begin{tikzpicture}[scale=2]
\begin{scope}[thick]
\draw (0,0) node[below left] {$C$} -- (0,1) node[above] {$A$} -- (1,0) node[below right] {$B$} -- (0,0);
\draw (0,0) rectangle (.2, .2);
\draw (-.1,.5) -- (.1,.5);
\draw (.5,.1) -- (.5,-.1);
\end{scope}
\end{tikzpicture}
\end{center}
\end{minipage}
\item The supplement of an acute angle is acute.\\
\begin{minipage}[t][.3\textheight]{\linewidth}
False: The supplement of $\angle A$ has measure $180^\circ - m\angle A$. If $\angle A$ is acute, then $m\angle A < 90^\circ$ and its supplement has measure $>90^\circ$, which means it is obtuse.
\end{minipage}
\end{enumerate}
\end{document}