Latex 为什么我的参考文献是空的

Latex 为什么我的参考文献是空的

我很难弄清楚为什么从 refworks 导出 bibtex 文件后我的参考文献列表会这样。我的 tex 代码由一个主文件组成,该文件将一组包含我文档不同部分的相关文本的文件绑定在一起。请参阅下面的组合 tex 代码(将所有输入语句替换为相关代码后)和 bib 文件。

Tex 文件:

\documentclass[11pt,twoside]{article}
\usepackage{apacite}

\begin{document}

% title page. Edit as needed for future publications. 
\title{Research Proposal}
\author{Teererai Marange \\
Department of Computer Science \\
University of Auckland\\
\texttt{[email protected]}}
\date{January 26, 2017}
\maketitle
% end title page. 

% abstract goes here
\newpage
\begin{abstract}
Abstract goes here 
\end{abstract}
\newpage


% table of contents 
\tableofcontents
\newpage


%begin introduction 
\section {Introduction}
Lorem Ipsum Doremifaso 

%\cite{Lellis2014} use to cite 




%references our biliography. This must go whereever we use our bibtex references



    \bibliography{references}
    \bibliographystyle{apacite}


    \end{document}

bibtex 文件:

  @misc{RefWorks:doc:572abc36e4b087a1e3af61fd,
        author =     {Estimating the Efficiency of Backtrack Programs},
        year =   {1975},
        title =      {MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129 JANUARY 1975, PAGES 121-136},
        volume =     {29},
        abstract =   {Abstract.     One  of  the  chief  difficulties   associated   with  the  so-called  backtracking    tech- nique  for  combinatorial     problems   has  been  our  inability   to  predict   the  efficiency   of  a given  algorithm,   or to  compare   the  efficiencies   of different   approaches,   without   actu- ally writing   and  running   the  programs.    This  paper  presents   a simple  method   which  pro- duces  reasonable   estimates   for  most  applications,    requiring   only  a modest   amount   of hand  calculation.     The  method   should   prove  to  be of  considerable    utility   in  connection with  D. H. Lehmer's   branch-and-bound     approach   to  combinatorial    optimization.}
    }
    @article{Lellis2014,
        author={Levi Lelis and Roni Stern and Ariel Felner and Sandra Zilles and Robert Holte},
        year={2014},
        month={November},
        title={Predicting optimal solution cost with conditional probabilities},
        journal={Annals of Mathematics and Artificial Intelligence},
        volume={72},
        number={3},
        pages={267-295},
        abstract={Heuristic search algorithms are designed to return an optimal path from a start state to a goal state. They find the optimal solution cost as a side effect. However, there are applications in which all one wants to know is an estimate of the optimal solution cost. The actual path from start to goal is not initially needed. For instance, one might be interested in quickly assessing the monetary cost of a project for bidding purposes. In such cases only the cost of executing the project is required. The actual construction plan could be formulated later, after bidding. In this paper we propose an algorithm, named Solution Cost Predictor (SCP), that accurately and efficiently predicts the optimal solution cost of a problem instance without finding the actual solution. While SCP can be viewed as a heuristic function, it differs from a heuristic conceptually in that: 1) SCP is not required to be fast enough to guide search algorithms; 2) SCP is not required to be admissible; 3) our measure of effectiveness is the prediction accuracy, which is in contrast to the solution quality and number of nodes expanded used to measure the effectiveness of heuristic functions. We show empirically that SCP makes accurate predictions on several heuristic search benchmarks.},
        isbn={1012-2443},
        language={English},
        doi={10.1007/s10472-014-9432-8}
    }
    @inproceedings{RefWorks:doc:5850e62fe4b02dcd50f40f9c,
        author={Carlos Linares Lopez and Andreas Junghanns},
        year={2002},
        title={Perimeter search performance},
        booktitle={International Conference on Computers and Games},
        publisher={Springer},
        pages={345-359}
    }
    @book{RefWorks:doc:57298613e4b0a05ab1595b05,
        author={Mike Barley and Levi H.S. Lellis and Sandraz Zilles and Robert C. Holte},
        year={2016},
        title={Heuristic Subset Selection in Classical Planning},
        language={English},
        url={http://replace-me/ebraryid=10477244}
    }
    @article{RefWorks:doc:5781f9f9e4b0fbd8da0bf0da,
        author={Mike Barley and Pat Riddle and Santiago Franco},
        year={2014},
        title={Overcoming the utility problem in heuristic generation: Why time matters. },
        journal={Proceedings of the Twenty-Proceedings Fourth International Conference on Automated Planning and Scheduling},
        abstract={Search has been vital to artificial intelligence from the very beginning as a core technique in problem solving. The authors present a thorough overview of heuristic search with a balance of discussion between theoretical analysis and efficient implementation and application to real-world problems. Current developments in search such as pattern databases and search with efficient use of external memory and parallel processing units on main boards and graphics cards are detailed. Heuristic search as a problem solving tool is demonstrated in applications for puzzle solving, game playing, constraint satisfaction and machine learning. While no previous familiarity with heuristic search is necessary the reader should have a basic knowledge of algorithms, data structures, and calculus. Real-world case studies and chapter ending exercises help to create a full and realized picture of how search fits into the world of artificial intelligence and the one around us. This title provides real-world success stories and case studies for heuristic search algorithms. It includes many AI developments not yet covered in textbooks such as pattern databases, symbolic search, and parallel processing units.},
        language={English},
        url={http://replace-me/ebraryid=10477244}
    }
    @article{RefWorks:doc:572abc30e4b087a1e3af61fa,
        author={Pang C. Chen},
        year={1992},
        month={Apr 1,},
        title={Heuristic Sampling: A Method for Predicting the Performance of Tree Searching Programs},
        journal={SIAM Journal on Computing},
        volume={21},
        number={2},
        pages={295},
        abstract={Determining the feasibility of a particular search program is important in practical situations, especially when the computation involved can easily require days, or even years. To help make such predictions, a simple procedure based on a stratified sampling approach is presented. This new method, which is called heuristic sampling, is a generalization of Knuth's original algorithm for estimating the efficiency of backtrack programs. With the aid of simple heuristics, this method can produce significantly more accurate cost estimates for commonly used tree search algorithms such as depth-first, breadth-first, best-first, and iterative-deepening.},
        isbn={0097-5397},
        language={English},
        url={http://search.proquest.com/docview/919708785},
        doi={10.1137/0221022}
    }
    @article{RefWorks:doc:577dfc64e4b078abda92e8f1,
        author={Armand Prieditis and Robert Davis},
        year={1995},
        title={Quantitatively relating abstractness to the accuracy of admissible heuristics},
        journal={Artificial Intelligence},
        volume={74},
        number={1},
        pages={165-175},
        isbn={0004-3702},
        language={English},
        url={http://www.sciencedirect.com/science/article/pii/000437029400084E},
        doi={10.1016/0004-3702(94)00084-E}
    }
    @misc{RefWorks:doc:572bb99be4b0f8534b8b5856,
        author =     {Valtorta Marco},
        year =   {1984},
        title =      {A Result on the Computational Complexity of Heuristic Estimates for the A* Algorithm},
        journal =    {Information Sciences 34},
        abstract =   {The performance of a new heuristic search algorithm is analyzed. The algorithm uses a
    formal representation (semantic representation) that contains enough information to compute
    the heuristic evaluation function h (n). as defined in the context of A *. without requiring a
    human expert to provide it. The heuristic is computed by 

答案1

您必须实际引用其中一个条目。例如,取消注释以下行

%\cite{Lellis2014} use to cite 

您将会在参考文献列表中看到该条目。

要包含 bibfile 中的所有条目但不引用它们,请输入以下行

\nocite{*}

位于文档正文的某处。

当然你必须运行bibtex,并且必须调用参考书目文件references.bib

相关内容