我有下表,其中第 4 列超出了页面。我该如何解决这个问题。
\documentclass[12pt]{article}
\usepackage{mathrsfs}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{tabularx,ragged2e,booktabs,caption}
\usepackage{tabu}
\usepackage{amssymb,bm}
\usepackage{array}
\begin{document}
\begin{table}
\centering
\bgroup
\def\arraystretch{2.0}
\begin{tabular}{|c|c|c|c|}
\cline{1-4}
$\mu \in Y$ & $\widetilde{Q}=\mu P=(r,s)$ & $\mu P \oplus T'$ & $Z(nP)$ \\ \cline{1-4}
$-4$ & $(339,-6156)$ &$\bigg(\dfrac{4482}{361}\beta + \dfrac{3489}{361}, \dfrac{-52002}{6859}\beta + \dfrac{2057238}{6859}\bigg)$ & $2^{22}\cdot3^{44}\cdot19^{-32}\cdot13\cdot1789\cdot[-46931113911612188165\beta + 242506871209270916181]^2$ \\ \cline{1-4}
$-3$ &$(6,162)$& $\bigg(\dfrac{-99}{8}\beta + \dfrac{93}{8}, \dfrac{-81}{16}\beta - \dfrac{5049}{16}\bigg)$ & $2^{-32}\cdot3^{34}\cdot5\cdot29\cdot[\dfrac{-143654012463}{2}\beta + \dfrac{596091741497}{2}]^2$ \\ \cline{1-4}
$-2$ & $(51,108)$&- & $(162\beta + 681,-5994\beta - 24786)$ \\ \cline{1-4}
$-1$ &$(-21,-324)$& $(-18\beta + 69, -162\beta + 918)$ & $2^{24}\cdot3^{34}\cdot5\cdot29\cdot(95293 +23052\beta)^2$ \\ \cline{1-4}
$0$ &$\mathcal{O}$& $??$ & $??$ \\ \cline{1-4}
$3$ &$(6,-162)$& $\bigg(\dfrac{-99}{8}\beta + \dfrac{93}{8}, \dfrac{81}{16}\beta + \dfrac{5049}{16}\bigg)$ & $2^{-32}\cdot3^{34}\cdot5333\cdot97324757\cdot[\dfrac{2188485}{2}\beta + \dfrac{12121421}{2}]^2$ \\ \cline{1-4}
\end{tabular}
\egroup
\caption{Conditions following from lifting the multiplier.\label{condition}}
\end{table}
\end{document}
答案1
使用几何包并将方向设为景观
\documentclass[12pt,a4paper,landscape]{article}
\usepackage[left=1cm,right=1cm]{geometry}
\usepackage{mathrsfs}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{tabularx,ragged2e,booktabs,caption}
\usepackage{tabu}
\usepackage{amssymb,bm}
\usepackage{array}
\begin{document}
\begin{table}
\centering
\def\arraystretch{2.0}
\begin{tabular}{|c|c|c|c|}
\cline{1-4}
$\mu \in Y$ & $\widetilde{Q}=\mu P=(r,s)$ & $\mu P \oplus T'$ & $Z(nP)$ \\ \cline{1-4}
$-4$ & $(339,-6156)$ &$\bigg(\dfrac{4482}{361}\beta + \dfrac{3489}{361}, \dfrac{-52002}{6859}\beta + \dfrac{2057238}{6859}\bigg)$ & $2^{22}\cdot3^{44}\cdot19^{-32}\cdot13\cdot1789\cdot[-46931113911612188165\beta + 242506871209270916181]^2$ \\ \cline{1-4}
$-3$ &$(6,162)$& $\bigg(\dfrac{-99}{8}\beta + \dfrac{93}{8}, \dfrac{-81}{16}\beta - \dfrac{5049}{16}\bigg)$ & $2^{-32}\cdot3^{34}\cdot5\cdot29\cdot[\dfrac{-143654012463}{2}\beta + \dfrac{596091741497}{2}]^2$ \\ \cline{1-4}
$-2$ & $(51,108)$&- & $(162\beta + 681,-5994\beta - 24786)$ \\ \cline{1-4}
$-1$ &$(-21,-324)$& $(-18\beta + 69, -162\beta + 918)$ & $2^{24}\cdot3^{34}\cdot5\cdot29\cdot(95293 +23052\beta)^2$ \\ \cline{1-4}
$0$ &$\mathcal{O}$& $??$ & $??$ \\ \cline{1-4}
$3$ &$(6,-162)$& $\bigg(\dfrac{-99}{8}\beta + \dfrac{93}{8}, \dfrac{81}{16}\beta + \dfrac{5049}{16}\bigg)$ & $2^{-32}\cdot3^{34}\cdot5333\cdot97324757\cdot[\dfrac{2188485}{2}\beta + \dfrac{12121421}{2}]^2$ \\ \cline{1-4}
\end{tabular}
\caption{Conditions following from lifting the multiplier.\label{condition}}
\end{table}
\end{document}
答案2
定义列为 para 模式,即
\begin{tabular}{|c|c|p{5cm}|p{5cm}|}