以下代码由 Mathematica 软件创建:
%% AMS-LaTeX Created with the Wolfram Language : www.wolfram.com
\documentclass{article}
\usepackage{amsmath, amssymb, graphics, setspace}
\newcommand{\mathsym}[1]{{}}
\newcommand{\unicode}[1]{{}}
\newcounter{mathematicapage}
\begin{document}
\title{Me Salva! ITD07}
\author{Leandro Carvalho}
\date{21/06/2017}
\maketitle{Estudo}
\begin{doublespace}
\noindent\(\pmb{\text{r1}=\sqrt{18};\text{r2}=6\text{Cos}[\theta ];}\\
\pmb{\text{g1}=\text{PolarPlot}[\text{r1},\{\theta ,0,2 \pi \}];}\\
\pmb{\text{g2}=\text{PolarPlot}[\text{r2},\{\theta ,0,2 \pi \}];}\\
\pmb{\text{Show}[\{\text{g1},\text{g2}\}]}\\
\pmb{}\\
\pmb{\text{RegionPlot}\left[x^2+y^2<18,\{x,0,10\},\{y,0,10\},\text{PlotStyle}\to \text{Yellow}\right]}\\
\pmb{\text{RegionPlot}\left[(x-3)^2+y^2<9,\{x,0,10\},\{y,0,10\},\text{PlotStyle}\to \text{Blue}\right]}\\
\pmb{\text{RegionPlot}\left[x^2+y^2<18\&\&(x-3)^2+y^2<9,\{x,0,10\},\{y,0,10\}\right]}\\
\pmb{}\\
\pmb{\mathcal{R}=\text{ImplicitRegion}\left[x^2+y^2<18\&\&(x-3)^2+y^2<9,\{x,y\}\right];}\\
\pmb{\text{RegionDimension}[\mathcal{R}]}\)
\end{doublespace}
\begin{doublespace}
\noindent\(2\)
\end{doublespace}
\begin{doublespace}
\noindent\(\pmb{\int _0^{\frac{\pi }{4}}\int _0^{\sqrt{18}}5 r^3 \text{Sin}[\theta ] \text{Cos}[\theta ]drd\theta +\int _{\frac{\pi }{4}}^{\frac{\pi
}{2}}\int _0^{6 \text{Cos}[\theta ]}5 r^3 \text{Sin}[\theta ] \text{Cos}[\theta ]drd\theta }\)
\end{doublespace}
\begin{doublespace}
\noindent\(135\)
\end{doublespace}
\end{document}
和pmb
命令noindent
用于什么?
答案1
答案2
的用法\pmb
简直是荒谬的,同样如此doublespace
。
如果您想要获得可接受的结果,则需要进行一些编辑。
\documentclass[fleqn]{article}
\usepackage{amsmath, amssymb}
\newcommand{\opn}{\operatorname} % shorthand
\setlength{\mathindent}{0pt}
\begin{document}
\title{Me Salva! ITD07}
\author{Leandro Carvalho}
\date{21/06/2017}
\maketitle
\boldmath
\begin{align*}
& r_1=\sqrt{18};r_2=6\opn{Cos}[\theta ];\\
& g_1=\opn{PolarPlot}[r_1,\{\theta ,0,2 \pi \}];\\
& g_2=\opn{PolarPlot}[r_2,\{\theta ,0,2 \pi \}];\\
& \opn{Show}[\{g_1,g_2\}]\\[2ex]
& \opn{RegionPlot}[x^2+y^2<18,\{x,0,10\},\{y,0,10\},\opn{PlotStyle}\to \opn{Yellow}\\
& \opn{RegionPlot}[(x-3)^2+y^2<9,\{x,0,10\},\{y,0,10\},\opn{PlotStyle}\to \opn{Blue}\\
& \opn{RegionPlot}[x^2+y^2<18\&\&(x-3)^2+y^2<9,\{x,0,10\},\{y,0,10\}\\[2ex]
& \mathcal{R}=\opn{ImplicitRegion}[x^2+y^2<18\&\&(x-3)^2+y^2<9,\{x,y\};\\
& \opn{RegionDimension}[\mathcal{R}]\\[2ex]
& \text{\unboldmath $2$}\\
& \int _0^{\frac{\pi }{4}}\int _0^{\sqrt{18}}5 r^3 \opn{Sin}[\theta ]
\opn{Cos}[\theta ]\,dr\,d\theta +
\int _{\frac{\pi }{4}}^{\frac{\pi }{2}}\int _0^{6 \opn{Cos}[\theta ]}5 r^3 \opn{Sin}[\theta ]
\opn{Cos}[\theta ]\,dr\,d\theta\\[2ex]
& \text{\unboldmath $135$}
\end{align*}
\end{document}