练习包中可以同时包含简短答案和长答案吗?
例如,在下面的例子中:数学书-如何编写练习和答案 - stack exchange
是否可以同时有一个简短的答案部分,仅显示答案,然后是一个完整的长答案部分?
梅威瑟:
\documentclass[11pt]{article}
\usepackage[margin=2cm,includefoot,bottom=2.55cm,top=2.025cm,headsep=0.5cm,footskip=0.65cm]{geometry}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{multicol}
\usepackage{ifthen}
\newboolean{firstanswerofthesection}
\usepackage{xcolor}
\definecolor{e}{RGB}{0,40,120}
\usepackage{chngcntr}
\usepackage{stackengine}
\usepackage{tasks}
\newlength{\longestlabel}
\settowidth{\longestlabel}{(m)}
\settasks{label-format=\color{e}, counter-format={(tsk[a])}, label-width=\longestlabel,
item-indent=0pt, label-offset=2pt, column-sep={10pt}}
\usepackage[lastexercise,answerdelayed]{exercise}
\counterwithin{Exercise}{section}
\counterwithin{Answer}{section}
\renewcounter{Exercise}[section]
\newcommand{\QuestionNB}{\color{e}\bfseries\arabic{Question}.\,}
\renewcommand{\ExerciseName}{EXERCISE}
\renewcommand{\ExerciseHeader}{\noindent\def\stackalignment{l}% code from https://tex.stackexchange.com/a/195118/101651
\stackunder[0pt]{\colorbox{e}{\textcolor{white}{\textbf{\large\ExerciseName\;\large\ExerciseHeaderNB}}}}{\textcolor{e}{\rule{\linewidth}{2pt}}}\medskip}
\renewcommand{\AnswerName}{Exercises}
\renewcommand{\AnswerHeader}{\ifthenelse{\boolean{firstanswerofthesection}}%
{\bigskip\noindent\textcolor{e}{\textbf{SECTION \thesection}}\newline\newline%
\noindent\bfseries\emph{\textcolor{e}{\AnswerName\ \ExerciseHeaderNB, page %
\pageref{\AnswerRef}}}\smallskip}
{\noindent\bfseries\emph{\textcolor{e}{\AnswerName\ \ExerciseHeaderNB, page \pageref{\AnswerRef}}}\smallskip}}
\setlength{\QuestionIndent}{16pt}
\begin{document}
\section{First}
\begin{Exercise}\label{EX11}
\vspace{-\baselineskip}% <-- You don't need this line of code if there's some text here
\Question In problem \ref{EX11-1-i}-\ref{EX11-1-iii}, determine whether the given differential equation is separable
\begin{tasks}(2)
\task\label{EX11-1-i} $\frac{dy}{dx}-\sin{(x+y)}=0$
\task $\frac{dy}{dx}=4y^2-3y+1$
\task\label{EX11-1-iii} $\frac{ds}{dt}=t\ln{(s^{2t})}+8t^2$
\end{tasks}
\Question In problem \ref{EX11-2-iv}-\ref{EX11-2-viii}, solve the equation
\begin{tasks}[resume=true](2)
\task\label{EX11-2-iv} $\frac{dx}{dt}=3xt^2$
\task $y^{-1}dy+ye^{\cos{x}}\sin{x}dx=0$
\task $(x+xy^2)dx+ye^{\cos{x}}\sin{x}dx=0$
\task\label{EX11-2-viii} $\frac{dy}{dt} = \frac{y}{t+1} + 4t^2 + 4t$, $\quad$ $y(1) = 10$
\end{tasks}
\end{Exercise}
\setboolean{firstanswerofthesection}{true}
\begin{multicols}{2}
\begin{Answer}[ref={EX11}]
\Question
\begin{tasks}(3)
\task 45
\task 32
\task 32
\end{tasks}
\Question
\begin{tasks}[resume=true]
\task This is a solution of Ex 4
\task This is a solution of Ex 5
\task This is a solution of Ex 6
\task This is a solution of Ex 7
\end{tasks}
\end{Answer}
\end{multicols}
\setboolean{firstanswerofthesection}{false}
\begin{Exercise}\label{EX12}
Another exercise.
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\Question If you don't need a horizontal list, you can simply use
\end{Exercise}
\begin{multicols}{2}
\begin{Answer}[ref={EX12}]
\Question This is a solution of Ex 1
\end{Answer}
\end{multicols}
\section{Second}
\begin{Exercise}\label{EX21}
\vspace{-\baselineskip}% <-- You don't need this line of code if there's some text here
\Question Eight systems of differential equations and five direction fields are given below. Determine the system that corresponds to each direction field and sketch the solution curves that correspond to the initial conditions $(x_0, y_0) = (0,1)$ and $(x_0, y_0) = (1,-1)$.
\begin{tasks}(3)
\task $\begin{aligned}
\frac{dx}{dt} & = -x \\
\frac{dy}{dt} & = y-1
\end{aligned}$
\task $\begin{aligned}
\frac{dx}{dt} & = x^2 - 1 \\
\frac{dy}{dt} & = y
\end{aligned}$
\task $\begin{aligned}
\frac{dx}{dt} & = x+2y \\
\frac{dy}{dt} & = -y
\end{aligned}$
\task $\begin{aligned}
\frac{dx}{dt} & = 2x \\
\frac{dy}{dt} & = y
\end{aligned}$
\task $\begin{aligned}
\frac{dx}{dt} & = x \\
\frac{dy}{dt} & = 2y
\end{aligned}$
\task$\begin{aligned}
\frac{dx}{dt} & = x-1 \\
\frac{dy}{dt} & = -y
\end{aligned}$
\task$\begin{aligned}
\frac{dx}{dt} & = x^2-1 \\
\frac{dy}{dt} & = -y
\end{aligned}$
\task $\begin{aligned}
\frac{dx}{dt} & = x- 2y \\
\frac{dy}{dt} & = -y
\end{aligned}$
\end{tasks}
\end{Exercise}
\setboolean{firstanswerofthesection}{true}
\begin{multicols}{2}
\begin{Answer}[ref={EX21}]
\Question
\begin{tasks}
\task This is a solution of Ex 1
\task This is a solution of Ex 2
\task This is a solution of Ex 3
\task This is a solution of Ex 4
\task This is a solution of Ex 5
\task This is a solution of Ex 6
\task This is a solution of Ex 7
\task This is a solution of Ex 8
\end{tasks}
\end{Answer}
\end{multicols}
\setboolean{firstanswerofthesection}{false}
\newpage
\begin{Exercise}\label{EX22}
Since these are systems, maybe it's better to put the \verb|aligned| enviroment within \verb|\left\{| and \verb|\right.|:
\Question Eight systems of differential equations and five direction fields are given below. Determine the system that corresponds to each direction field and sketch the solution curves that correspond to the initial conditions $(x_0, y_0) = (0,1)$ and $(x_0, y_0) = (1,-1)$.
\begin{tasks}(3)
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = -x \\
\frac{dy}{dt} & = y-1
\end{aligned}\right.$
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = x^2 - 1 \\
\frac{dy}{dt} & = y
\end{aligned}\right.$
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = x+2y \\
\frac{dy}{dt} & = -y
\end{aligned}\right.$
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = 2x \\
\frac{dy}{dt} & = y
\end{aligned}\right.$
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = x \\
\frac{dy}{dt} & = 2y
\end{aligned}\right.$
\task$\left\{\begin{aligned}
\frac{dx}{dt} & = x-1 \\
\frac{dy}{dt} & = -y
\end{aligned}\right.$
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = x^2-1 \\
\frac{dy}{dt} & = -y
\end{aligned}\right.$
\task $\left\{\begin{aligned}
\frac{dx}{dt} & = x- 2y \\
\frac{dy}{dt} & = -y
\end{aligned}\right.$
\end{tasks}
\end{Exercise}
\begin{multicols}{2}
\begin{Answer}[ref={EX22}]
\Question
\begin{tasks}
\task This is a solution of Ex 1
\task This is a solution of Ex 2
\task This is a solution of Ex 3
\task This is a solution of Ex 4
\task This is a solution of Ex 5
\task This is a solution of Ex 6
\task This is a solution of Ex 7
\task This is a solution of Ex 8
\end{tasks}
\end{Answer}
\end{multicols}
\newpage
\section{Answer to all problems}
\begin{multicols}{2}\raggedcolumns
\shipoutAnswer
\end{multicols}
\end{document}