答案1
我会做类似以下的事情(不追求美观)
\documentclass{article}
\usepackage{amsmath,amsfonts}
\begin{document}
We did symmetric matrix stuff. Let $K_1, K_2, K_3, K_4$ be symmetric matrices defined as
\[
\mathbb{J} = \begin{bmatrix}1&-1\\-1&1\end{bmatrix},\
K_2 = \begin{bmatrix} \frac{12EI}{L^2}&\frac{12EI}{L^2}&\frac{12EI}{L^2}&\frac{12EI}{L^2}\\
\star&\frac{12EI}{L^2}&\frac{12EI}{L^2}&\frac{12EI}{L^2}\\
\star&\star&\frac{12EI}{L^2}&\frac{12EI}{L^2}\\
\star&\star&\star&\frac{12EI}{L^2}
\end{bmatrix},\
K_3 = \begin{bmatrix} \frac{12EI}{L^2}&\frac{12EI}{L^2}&\frac{12EI}{L^2}&\frac{12EI}{L^2}\\
\star&\frac{12EI}{L^2}&\frac{12EI}{L^2}&\frac{12EI}{L^2}\\
\star&\star&\frac{12EI}{L^2}&\frac{12EI}{L^2}\\
\star&\star&\star&\frac{12EI}{L^2}
\end{bmatrix}
\]
then
\[
K = \begin{bmatrix}\frac{EA}{L}\mathbb{J}&&&\\&K_2&&\\&&K_3&\\&&&\frac{JG}{L}\mathbb{J}\end{bmatrix}
\]
\end{document}