编译时将方程式导出为图像

编译时将方程式导出为图像

我想要获得一个 .pdf 文件,其中文本是正常的,但方程式/数学模式都是图像,以便我可以轻松地将其转换为 .docx。

我尝试了许多转换器,但没有一个能够处理复杂的方程式。图像和文本转换得很完美。我尝试了 Nitro PDF、Office 2016、Adobe Acrobat Pro 最新版本和 GrindEQ。(在我使用的所有程序中,Office 2016 的效果最好。)

然后我改变了我的谷歌搜索方式,决定将方程式制作成图像。我得到了以下结果 (以及许多其他方法),但都没有奏效。

如果你有解决方案,能否写一个完整的程序,因为我还是 Latex 的初学者。以下示例可能有用

\documentclass[a4paper,14pt]{extreport}
\newcommand*\chem[1]{\ensuremath{\mathrm{#1}}}
\usepackage[english]{babel}
\usepackage{caption}
\usepackage{gensymb}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{caption}
\usepackage{subfigure}
\usepackage{float}
\usepackage{makecell}
\usepackage{boldline}
\usepackage{booktabs,tabularx,array}
\usepackage[table,dvipsnames,xcdraw]{xcolor}
\usepackage{colortbl}
\graphicspath{ {images/} }
\usepackage{cite}
\usepackage{varioref}
\usepackage[hyperfootnotes=false]{hyperref}
\usepackage[capitalize]{cleveref}
\hypersetup{
    colorlinks,
    citecolor=Blue,
    linkcolor=Red,
    urlcolor=Blue}

\newcommand{\thickhline}{%
    \noalign {\ifnum 0=`}\fi \hrule height 1pt
    \futurelet \reserved@a \@xhline}
\newcolumntype{P}[1]{>{\centering\arraybackslash}p{#1}}
\newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}
\newcolumntype{N}{@{}m{0pt}@{}}

\begin{document}
\captionsetup[figure]{labelfont={bf},labelformat={default},labelsep=period,name={Fig.}}
\renewcommand{\figureautorefname}{Fig.}
\renewcommand{\equationautorefname}{Eq.}
\renewcommand{\arraystretch}{1.2}


\chapter{General Introduction}


\subsection {Ultrasonic Nebulized Atomization}
\indent 

Ultrasonic nebulizer has been used to obtain uniformly distributed droplets of micrometer size. In this process the precursor solutions are vaporized with an ultrasonic nebulizer which is operated at a frequency of 2.56 MHz. The produced droplets of micrometer size have no inertia in their movement and can be transported without heating by the carrier gas through a pipe to the substrate. The solvent vaporizes as the droplets approach the substrate. The reactants diffuse to the substrate and a heterogeneous reaction occurs which leads to the formation of thin solid films. The pyrolysis of an aerosol, produced by the ultrasonic spraying is known as the pyrosol process. The advantage in this method is that the gas flow rate is independent of the aerosol flow rate, which is not the case with air blast spraying. The droplets from ultrasonic atomizer can be controlled using \autoref{Ultrasonic}
\begin{equation} \label{Ultrasonic}
d=0.34\left (\frac{8 \pi \gamma}{\rho f^{2}}  \right )^{\frac{1}{3}}
\end{equation}
where d is the diameter of the droplet (m),  $\gamma$ is the liquid's surface tension $(Nm^{-1})$, $\rho$ is the liquid density $(kgm^{-3})$ and f is the ultrasonic frequency (MHz)  .

\subsection{literature}
Singh and Ravindra (2010) measured the optical properties of different MPcs thin films including NiPc. The variation of refractive index (\textit{n}), extinction coefficient (\textit{k}), real ($\epsilon$\textsubscript{1}), imaginary ($\epsilon$\textsubscript{2}) parts of the complex dielectric constant ($\epsilon$) and reflectivity ($ R $) with energy (\textit{E}) were discussed and it was shown that \textit{n}, \textit{k}, $\epsilon$\textsubscript{1}, $\epsilon$\textsubscript{2} and \textit{R} vary significantly with \textit{E}. From the different MPcs (CuPc, NiPc, CoPc, FePc and MnPc) the highest energy gab (\textit{E}\textsubscript{g}) was for the CoPc and MnPc with 3.25 eV while the lowest \textit{E}\textsubscript{g} was for NiPc
\end{document}

相关内容