\begin{Question}{1}
Part 1) prove $f+g$ is holomorphic at $z_0$.\\
\\
We want to show that $(f+g)'(z_0)$ exists:\\
\\
$$ (f+g)'(z_0) =\lim_{z \to z_0} \frac{(f+g)(z) - (f+g)(z_0)}{z-z_0}$$\\
$$ =\lim_{z \to z_0} \frac{f(z)+g(z)- f(z_0)-g(z_0)}{z-z_0}$$\\
$$=\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} + \lim_{z \to z_0}
\frac{g(z)-g(z_0)}{z-z_0}$$\\
$$ = f'(z_0) + g'(z_0)$$
\end{Question}
我尝试使用 \begin{aligned} \end{aligned} 但它只有一行
我怎样才能将它们左对齐?我不想要水平对齐!
答案1
以下是两个使用aligned
环境的解决方案。在第一个解决方案中,多行方程的所有四行都是左对齐的,这似乎是您想要的。在第二个解决方案中,对齐是在符号上=
。代码块之间的唯一区别在于&
第 1 行中对齐说明符的位置。
(就我个人而言,我更喜欢第二种解决方案。)
\documentclass{article}
\usepackage{amsmath}
\begin{document}
Prove $f+g$ is holomorphic at $z_0$.
We want to show that $(f+g)'(z_0)$ exists:
\smallskip\noindent
$\begin{aligned}
&(f+g)'(z_0) =\lim_{z \to z_0} \frac{(f+g)(z) - (f+g)(z_0)}{z-z_0}\\
&=\lim_{z \to z_0} \frac{f(z)+g(z)- f(z_0)-g(z_0)}{z-z_0}\\
&=\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} + \lim_{z \to z_0}
\frac{g(z)-g(z_0)}{z-z_0}\\
&= f'(z_0) + g'(z_0)
\end{aligned}$
\bigskip\noindent
$\begin{aligned}
(f+g)'(z_0) &=\lim_{z \to z_0} \frac{(f+g)(z) - (f+g)(z_0)}{z-z_0}\\
&=\lim_{z \to z_0} \frac{f(z)+g(z)- f(z_0)-g(z_0)}{z-z_0}\\
&=\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} + \lim_{z \to z_0}
\frac{g(z)-g(z_0)}{z-z_0}\\
&= f'(z_0) + g'(z_0)
\end{aligned}$
\end{document}
答案2
我想,您正在寻找类似这样的东西:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
Part 1) prove $f+g$ is holomorphic at $z_0$.
\bigskip
We want to show that $(f+g)'(z_0)$ exists:
\begin{align*}
(f+g)'(z_0)
& = \lim_{z \to z_0} \frac{(f+g)(z) - (f+g)(z_0)}{z-z_0} \\
& = \lim_{z \to z_0} \frac{f(z)+g(z)- f(z_0)-g(z_0)}{z-z_0} \\
& = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0}
+ \lim_{z \to z_0} \frac{g(z)-g(z_0)}{z-z_0} \\
& = f'(z_0) + g'(z_0)
\end{align*}
\end{document}
答案3
您有一个fleqn
由 定义的环境nccmath
,其工作原理类似于subequations
:此环境内显示的所有方程式都将左对齐。它接受一个可选参数 - 环境开始的左边距的距离(默认为 0)。这里我选择了 \parindent
:
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage{amsmath, nccmath}
\begin{document}
Part 1) prove $f+g$ is holomorphic at $z_0$.
\bigskip
We want to show that $(f+g)'(z_0)$ exists:
\begin{fleqn}[\parindent]
\begin{align*}
(f+g)'(z_0)
& = \lim_{z \to z_0} \frac{(f+g)(z) - (f+g)(z_0)}{z-z_0} \\
& = \lim_{z \to z_0} \frac{f(z)+g(z)- f(z_0)-g(z_0)}{z-z_0} \\
& = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} + \lim_{z \to z_0} \frac{g(z)-g(z_0)}{z-z_0}\\
& = f'(z_0) + g'(z_0)
\end{align*}
\end{fleqn}
\end{document}