间距问题。我的 \medskip 在某些部分大得离谱(一开始是正常的),我不知道为什么

间距问题。我的 \medskip 在某些部分大得离谱(一开始是正常的),我不知道为什么

这是我的乳胶副本。寻求任何解释。

\documentclass[11pt]{amsart}

\usepackage{amsfonts}
\usepackage{graphics}
\usepackage{tikz}
\usepackage{booktabs}
\usepackage{etoolbox}
\makeatletter
\preto{\@tabular}{\parskip=0pt}
\makeatother

\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}

\newcommand{\abs}[1]{\left|#1\right|}


\setlength{\textheight}{9in}
\setlength{\textfloatsep}{0pt}
\setlength{\belowdisplayskip}{0pt} \setlength{\belowdisplayshortskip}{0pt}
\setlength{\abovedisplayskip}{0pt} \setlength{\abovedisplayshortskip}{0pt}
\addtolength{\oddsidemargin}{-.875in}
\addtolength{\evensidemargin}{-.625in}
\addtolength{\textwidth}{1.50in}
\addtolength{\textheight}{-.825in}

\begin{document}

\thispagestyle{empty}

\pagestyle{empty}


\noindent {\Large \textbf{Chapter 5}}

\bigskip

\begin{enumerate}\addtolength{\itemsep}{.5\baselineskip}


\medskip\item[52] \textbf{Use the Euclidean Algorithm to find $\gcd(219, 69)$.} 

\medskip

By using the Euclidean Algorithm, we get the following:

\begin{equation*}
\openup\jot 
\begin{aligned}[t]
 & a = bq_{1} + r_{1}\\
  & b = r_{1}q_{2} + r_{2}\\
  & r_{1} = r_{2}q_{3} + r_{3}\\
  & r_{2} = r_{3}q_{4} + r_{4}
\end{aligned}
\qquad\qquad 
\begin{aligned}[t]
 &219 = 69(3) + 12\\
  &69 = 12(5) + 9\\
  &12 = 9(1) + 3\\
  &9 = 3(3) + 0
\end{aligned}
\end{equation*}

The last non-zero remainder is the greatest common divisor, and so $gcd(219, 69) = 3$

\item[53] \textbf{Find integers m and n so that $\gcd(219, 69) = 219m + 69n$.}  

\medskip

\noindent We need to find the values for m and n when: 

$3=219m +69n$

\medskip

The first step to solve this is to take the Euclidean Algorithm that we solved from above and in each step of it, solve for the remainder.

\begin{equation*}
\openup\jot 
\begin{aligned}[t]
 &219 = 69(3) + 12\\
  &69 = 12(5) + 9\\
  &12 = 9(1) + 3\\
  &9 = 3(3) + 0
\end{aligned}
\qquad\qquad 
\begin{aligned}[t]
 &12 = 219 - 69(3)\\
  &9 = 69 - 12(5) \\
  &3 = 12 - 9(1) \\
  &0 = 9 - 3(3) 
\end{aligned}
\end{equation*}

\medskip

\noindent We begin the process by using the equation

\medskip

\begin{tabular}{ll}

$3 = 12 - 9(1)$ & We can also rewrite this as, \\

$3 = 12 + 9(-1)$ & We can now substitute for what 9 is equal to \\

$3 = 12 + (69-12(5))(-1)$ & We can rewrite this equation as \\

$3 = 12 + (69+12(-5))(-1)$ & We then can simplify \\

$3 = 12 + (69(-1)+12(5))$ & Which further simplifies to \\

$3 = 12(6) + 69(-1)$ & We can now substitute in for what 12 is equal to \\

$3 = (219 - 69(3)(6)) + 69(-1)$ & We can rewrite this equation as\\

$3 = (219 + 69(-3)(6)) + 69(-1)$ & We then can simplify \\

$3 = (219(6) + 69(-18)) + 69(-1)$ & Which further simplifies to \\

$3 = 219(6) + 69(-19)$ &
\end{tabular}

\medskip

\noindent By the above equation we have solved $\gcd(219, 69) = 219m + 69n$ when $m=6$ and $n=-19$.


\item[54] \textbf{Use the Euclidean Algorithm to find gcd(10245, 5357).}  

By using the Euclidean Algorithm, we get the following:

\begin{center}
\begin{tabular}{rll} 
$10245$ & $=5357(1)$ & + $4888$ \\ 
$5357$ & $=4888(1)$ & + $469$ \\
$4888$ & $=469(10)$ & + $198$ \\
$469$ & $=198(2)$ & + $73$\\
$198$ & $=73(2)$ & + $52$ \\
$73$ & $=52(1)$ & + $21$ \\
$52$ & $=21(2)$ & + $10$  \\ 
$21$ & $=10(2)$ & + $1$  \\
$10$ & $=1(10)$ & \\

\end{tabular}
\end{center}


The last non-zero remainder is the greatest common divisor, and so $\gcd(10245, 5357) = 1$

\item[55] \textbf{Find integers m and n so that $\gcd(10245, 5357) = 10245m + 5357n$.}  

\noindent We need to find the values for m and n when: 

$1=10245m + 5357n$

\medskip

\noindent The first step to solve this is to take the Euclidean Algorithm that we solved from above and in each step of it, solve for the remainder.

\begin{equation*}
\openup\jot 
\begin{aligned}[t]
& 10245   = 5357(1) + 4888 \\ 
& 5357    =4888(1)   + 469 \\
& 4888    =469(10)   + 198 \\
& 469      =198(2)    + 73\\
& 198       =73(2)      + 52 \\
& 73         =52(1)      + 21 \\
& 52         =21(2)     + 10  \\ 
& 21         =10(2)     + 1  \\
& 10        =1(10) 
\end{aligned}
\qquad\qquad 
\begin{aligned}[t]
& 4888   = 10245 +5357(-1) \\ 
& 469      =5357 +4888(-1)   \\
& 198       =4888+469(-10)  \\
& 73        =469+198(-2)   \\
& 52        =198+73(-2)    \\
& 21         =73 + 52(-1)   \\
& 10         =52+21(-2)   \\ 
& 1           =21+ 10(-2)      
\end{aligned}
\end{equation*}

\noindent We begin the process by using the equation


\begin{tabular}{ll}


$1 = 21 + 10(-2)$ & We can now substitute for what 10 is equal to \\

$1 = 21 + (52+21(-2))(-2)$ & We then can simplify \\

$1 = 21 + (52(-2)+21(4))$ & Which further simplifies to \\

$1 = 21(5) + 52(-2)$ & We can now substitute in for what 21 is equal to \\

$1 = (73 + 52(-1)(5)) + 52(-2)$ & We then can simplify \\

$1 = (73(5) + 52(-5)) + 52(-2)$ & Which further simplifies to \\

$1 = 73(5) + 52(-7)$ & We can now substitute in for what 52 is equal to\\

$1 =  73(5) + (198+73(-2))(-7)$ &  We then can simplify \\

$1 =  73(5) + 198(-7) +73(14)$ &  Which further simplifies to  \\

$1 =  73(19) + 198(-7) $ &  We can now substitute in for what 73 is equal to  \\

$1 =  (469+198(-2))(19) + 198(-7) $ &    We then can simplify \\

$1 =  469(19)+198(-38) + 198(-7) $ &  Which further simplifies to    \\

$1 =  469(19)+198(-45) $ &  We can now substitute in for what 198 is equal to   \\

$1 =  469(19)+(4888+469(-10))(-45) $ &   We then can simplify  \\

$1 =  469(19)+ 4888 (-45) +469(450) $ & Which further simplifies to    \\

$1 =  469(469)+ 4888 (-45)$  & We can now substitute in for what 469 is equal to    \\

$1 =  (5357 +4888(-1))(469)+ 4888 (-45)$  &  We then can simplify   \\

$1 =  5357(469) +4888(-469)+ 4888 (-45)$  &   Which further simplifies to   \\

$1 =  5357(469) +4888(-514)$  &  We can now substitute in for what 4888 is equal to   \\

$1 =  5357(469) +(10245 +5357(-1))(-514)$  &   We then can simplify  \\

$1 =  5357(469) +10245(-514) +5357(514)$  & Which further simplifies to     \\

$1 =  5357(983) +10245(-514) $  &     \\

\end{tabular}

\medskip

\noindent By the above equation we have solved $\gcd(10245, 5357) = 10245m + 5357n$ when $m=-514$ and $n=983$.


\end{enumerate}

\end{document}

答案1

\medskip有时会产生不合理的大量垂直空白,原因是 (a)不是\medskip固定长度,而是所谓的“弹性”长度,并且 (b) 您有多个tabular无法跨页面拆分的大环境。因此,\medskip在各个地方会拉伸很多。

一种快速而(非常)粗暴的解决方案是\raggedbottom在 之后立即发出指令\begin{document}。这将停止实例的拉伸\medskip。但是,这种方法会在第 1 页和第 2 页的底部留下非常难看的间隙。

更好的解决方案是减少使用其他一些间距指令。例如,我认为您不需要在各种aligned环境中“打开”行距。通过这些调整,您的代码可以轻松适应约 1.8 页的输出。以下代码删除了语句\openup并执行了一些其他代码清理操作。我还缩短了最终tabular环境第二列中的短语,以确保它们tabular实际上适合文本块。

在此处输入图片描述

\documentclass[11pt]{amsart}

\usepackage{amsfonts}
\usepackage{graphics}
\usepackage{tikz}
\usepackage{booktabs}
%\usepackage{etoolbox}
%\makeatletter
%\preto{\@tabular}{\parskip=0pt}
%\makeatother

\usepackage{array}             % <-- new
\newcolumntype{C}{>{{}}c<{{}}}

\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}

\newcommand{\abs}[1]{\left|#1\right|}

%\setlength{\textheight}{9in}
%\addtolength{\oddsidemargin}{-.875in}
%\addtolength{\evensidemargin}{-.625in}
%\addtolength{\textwidth}{1.50in}
%\addtolength{\textheight}{-.825in}
\usepackage[letterpaper,margin=1in]{geometry}

\setlength{\textfloatsep}{0pt}
\setlength{\belowdisplayskip}{0pt} 
\setlength{\belowdisplayshortskip}{0pt}
\setlength{\abovedisplayskip}{0pt} 
\setlength{\abovedisplayshortskip}{0pt}

\renewcommand\labelenumi{\textbf{\arabic{enumi}}}

\begin{document}
\pagestyle{empty}
\thispagestyle{empty}

{\Large\textbf{Chapter 5}}

\bigskip

\begin{enumerate}
\setcounter{enumi}{51}
\addtolength{\itemsep}{.5\baselineskip}

\item \textbf{Use the Euclidean Algorithm to find $\gcd(219, 69)$.} 

\medskip\noindent
Using the Euclidean Algorithm, we get the following:
\begin{equation*}
%\openup\jot 
\begin{aligned}[t]
a &= bq_{1} + r_{1}\\
b &= r_{1}q_{2} + r_{2}\\
r_{1} &= r_{2}q_{3} + r_{3}\\
r_{2} &= r_{3}q_{4} + r_{4}
\end{aligned}
\qquad\qquad 
\begin{aligned}[t]
 219 &= 69(3) + 12\\
  69 &= 12(5) + 9\\
  12 &= 9(1) + 3\\
  9  &= 3(3) + 0
\end{aligned}
\end{equation*}
The last non-zero remainder is the greatest common divisor, and so $\gcd(219, 69) = 3$.

\item\textbf{Find integers $m$ and $n$ so that $\gcd(219, 69) = 219m + 69n$.}  

\medskip\noindent
 We need to find the values for $m$ and $n$ when: 
\[3=219m +69n\]
The first step to solve this is to take the Euclidean Algorithm that we solved from above and in each step of it, solve for the remainder.
\begin{equation*}
%\openup\jot 
\begin{aligned}[t]
 219 &= 69(3) + 12\\
  69 &= 12(5) + 9\\
  12 &= 9(1) + 3\\
   9 &= 3(3) + 0
\end{aligned}
\qquad\qquad 
\begin{aligned}[t]
 12 &= 219 - 69(3)\\
  9 &= 69 - 12(5) \\
  3 &= 12 - 9(1) \\
  0 &= 9 - 3(3) 
\end{aligned}
\end{equation*}

\medskip\noindent
We begin the process by using the equation
\[
\begin{tabular}{@{} >{$}l<{$} l @{}}

3 = 12 - 9(1) & We can also rewrite this as, \\

3 = 12 + 9(-1) & substitute for what 9 is equal to \\

3 = 12 + (69-12(5))(-1) & We can rewrite this equation as \\

3 = 12 + (69+12(-5))(-1) & We then can simplify \\

3 = 12 + (69(-1)+12(5)) & Which further simplifies to \\

3 = 12(6) + 69(-1) & substitute in for what 12 is equal to \\

3 = (219 - 69(3)(6)) + 69(-1) & We can rewrite this equation as\\

3 = (219 + 69(-3)(6)) + 69(-1) & We then can simplify \\

3 = (219(6) + 69(-18)) + 69(-1) & Which further simplifies to \\

3 = 219(6) + 69(-19) &
\end{tabular}
\]
By the above equation, we have solved $\gcd(219, 69) = 219m + 69n$ when $m=6$ and $n=-19$.


\item\textbf{Use the Euclidean Algorithm to find $\gcd(10245, 5357)$.}  

\medskip\noindent
By using the Euclidean Algorithm, we get the following:
\[
\setlength\arraycolsep{0pt}
\begin{array}{rClCl} 
10245 &=& 5357(1) &+&  4888 \\ 
5357 &=& 4888(1) &+&  469 \\
4888 &=& 469(10) &+&  198 \\
469 &=& 198(2) &+&  73\\
198 &=& 73(2) &+&  52 \\
73 &=& 52(1) &+&  21 \\
52 &=& 21(2) &+&  10  \\ 
21 &=& 10(2) &+&  1  \\
10 &=& 1(10) & 
\end{array}
\]
The last non-zero remainder is the greatest common divisor, and so $\gcd(10245, 5357) = 1$.

\item\textbf{Find integers $m$ and $n$ so that $\gcd(10245, 5357) = 10245m + 5357n$.}  

\medskip\noindent
We need to find the values for m and n when: 
\[1=10245m + 5357n\]
The first step to solve this is to take the Euclidean Algorithm that we solved from above and in each step of it, solve for the remainder.
\begin{equation*}
\begin{aligned}[t]
10245  &= 5357(1) + 4888 \\ 
5357   &=4888(1)   + 469 \\
4888   &=469(10)   + 198 \\
469     &=198(2)    + 73\\
198      &=73(2)      + 52 \\
73        &=52(1)      + 21 \\
52        &=21(2)     + 10  \\ 
21        &=10(2)     + 1  \\
10       &=1(10) 
\end{aligned}
\qquad\qquad 
\begin{aligned}[t]
4888  &= 10245 +5357(-1) \\ 
469     &=5357 +4888(-1)   \\
198      &=4888+469(-10)  \\
73       &=469+198(-2)   \\
52       &=198+73(-2)    \\
21        &=73 + 52(-1)   \\
10        &=52+21(-2)   \\ 
1          &=21+ 10(-2)      
\end{aligned}
\end{equation*}

\noindent
We begin the process by using the equation
\[
\begin{tabular}{>{$}l<{$} l@{}}

1 = 21 + 10(-2) & Substitute for what 10 is equal to \\

1 = 21 + (52+21(-2))(-2) & We then can simplify \\

1 = 21 + (52(-2)+21(4)) & Which further simplifies to \\

1 = 21(5) + 52(-2) & Substitute in for what 21 is equal to \\

1 = (73 + 52(-1)(5)) + 52(-2) & We then can simplify \\

1 = (73(5) + 52(-5)) + 52(-2) & Which further simplifies to \\

1 = 73(5) + 52(-7) & Substitute in for what 52 is equal to\\

1 =  73(5) + (198+73(-2))(-7) &  We then can simplify \\

1 =  73(5) + 198(-7) +73(14) &  Which further simplifies to  \\

1 =  73(19) + 198(-7)  &  Substitute in for what 73 is equal to  \\

1 =  (469+198(-2))(19) + 198(-7)  &  We then can simplify \\

1 =  469(19)+198(-38) + 198(-7)  &  Which further simplifies to    \\

1 =  469(19)+198(-45)  &  Substitute in for what 198 is equal to   \\

1 =  469(19)+(4888+469(-10))(-45)  &  We then can simplify  \\

1 =  469(19)+ 4888 (-45) +469(450)  & Which further simplifies to    \\

1 =  469(469)+ 4888 (-45)  & Substitute in for what 469 is equal to    \\

1 =  (5357 +4888(-1))(469)+ 4888 (-45)  &  We then can simplify   \\

1 =  5357(469) +4888(-469)+ 4888 (-45)  &   Which further simplifies to   \\

1 =  5357(469) +4888(-514)  & Substitute in for what 4888 is equal to   \\

1 =  5357(469) +(10245 +5357(-1))(-514)  &   We then can simplify  \\

1 =  5357(469) +10245(-514) +5357(514)  & Which further simplifies to     \\

1 =  5357(983) +10245(-514)   &     
\end{tabular}
\]
By the above equation we have solved $\gcd(10245, 5357) = 10245m + 5357n$ for $m=-514$ and $n=983$.

\end{enumerate}
\end{document}

相关内容