多线模式下的集中标签

多线模式下的集中标签

我想知道如何复制以下引理。

在此处输入图片描述

我尝试了以下代码

   \begin{lemma}
   On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such 
   that
   \begin{multline}\label{1.6.5}
   \rho>0 \hbox{ \  on \ } X^\circ, \rho=0  \hbox{ \  on \ } \partial X 
   \hbox{ \  and \ } \\
   \hbox{ \  in local coordinates at \ } p \in \partial X, \rho=a(x)x_1\dots 
   x_k, a(p)>0
   \end{multline}
   where $a$ is smooth.
   \end{lemma}

但标签停留在上面,句子不集中。

答案1

array可以使用/结构来标记跨多行中间的等式tabular,或者gathered

在此处输入图片描述

\documentclass[leqno]{report}

\usepackage{amsthm,amsmath}
\newtheorem{lemma}{Lemma}
\renewcommand{\thelemma}{\thesection.\arabic{lemma}}
\renewcommand{\theequation}{\thesection.\arabic{equation}}

\begin{document}

\chapter{A chapter}
\section{A section}
\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such that
\begin{equation}
  \begin{gathered}
    \text{$\rho > 0$ on $X^\circ$, $\rho = 0$ on $\partial X$ and} \\
    \text{in local coordinates at $p \in \partial X$, $\rho = a(x) x_1 \dots x_k$, $a(p) > 0$}
  \end{gathered}
\end{equation}
where $a$ is smooth.
\end{lemma}

\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such that
\begin{equation}
  \begin{tabular}{c}
    $\rho > 0$ on $X^\circ$, $\rho = 0$ on $\partial X$ and \\
    in local coordinates at $p \in \partial X$, $\rho = a(x) x_1 \dots x_k$, $a(p) > 0$
  \end{tabular}
\end{equation}
where $a$ is smooth.
\end{lemma}

\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such that
\setlength{\abovedisplayskip}{0pt}
\setlength{\belowdisplayskip}{0pt}
\begin{equation}
  \begin{tabular}{c}
    $\rho > 0$ on $X^\circ$, $\rho = 0$ on $\partial X$ and \\
    in local coordinates at $p \in \partial X$, $\rho = a(x) x_1 \dots x_k$, $a(p) > 0$
  \end{tabular}
\end{equation}
where $a$ is smooth.
\end{lemma}

\end{document}

最后一个选项(引理 1.1.3)提供了某种方法来删除方程上方/下方引入的垂直间距。这可能是必要的,因为引理是作为单个段落/句子(带有一些编号)编写的。

答案2

只是为了好玩。顺便说一句,centertags这里没用过。我只是想提醒一下。

演示

\documentclass{article}
\usepackage[leqno,centertags]{amsmath}
\newtheorem{lemma}{Lemma}

\begin{document}
\begin{lemma}
   On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such 
   that
   \begin{equation}
   \begin{cases}
   \rho>0 & \text{on $X^\circ$} \\
   \rho=0 & \text{on  $\partial X$} \\
   \rho=a(x)x_1\dots &\text{in local coordinates at $p \in \partial X$, $x_k$, $a(p)>0$}
   \end{cases}
   \end{equation}
   where $a$ is smooth.
   \end{lemma}
\end{document}

答案3

我建议采用以下布局alignat

\documentclass{book}
\usepackage[leqno]{mathtools}
\usepackage[amsmath, thmmarks]{ntheorem}
\theoremheaderfont{\scshape}
\theoremseparator{. }
\theorembodyfont{\itshape}
\newtheorem{lemma}{Lemma}[section]

\begin{document}
\setcounter{chapter}{1}
\setcounter{section}{6}
\setcounter{lemma}{1}

\begin{lemma}
  On any $t$-manifold there exist $ρ ∈ \mathcal{C}^{∞}(X)$ such
  that
  \begin{alignat}{3}
    \label{1.6.5}
     & & & \rho>0 \text{ on } X^\circ, & & \rho=0 \text{ on \ } ∂ X \hspace{6em}\notag \\
     & \text{and in }\rlap{local coordinates at $ p ∈ ∂ X $,}\hspace{5em} & & & \\
     & & & \rho=a(x)x₁ ... x_k, & \qquad & a(p)>0 \notag
  \end{alignat}
  where $a$ is smooth.
\end{lemma}

\end{document} 

在此处输入图片描述

答案4

按照以下建议,在方程环境中使用分割环境https://www.latex-project.org/help/documentation/amsldoc.pdf

\begin{equation}\begin{split}
   \rho>0 \hbox{ \  on \ } X^\circ, \rho=0  \hbox{ \  on \ } \partial X 
   \hbox{ \  and \ } \\
   \hbox{ \  in local coordinates at \ } p \in \partial X, \rho=a(x)x_1\dots 
   x_k, a(p)>0
\end{split}\end{equation}

相关内容