我想知道如何复制以下引理。
我尝试了以下代码
\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such
that
\begin{multline}\label{1.6.5}
\rho>0 \hbox{ \ on \ } X^\circ, \rho=0 \hbox{ \ on \ } \partial X
\hbox{ \ and \ } \\
\hbox{ \ in local coordinates at \ } p \in \partial X, \rho=a(x)x_1\dots
x_k, a(p)>0
\end{multline}
where $a$ is smooth.
\end{lemma}
但标签停留在上面,句子不集中。
答案1
array
可以使用/结构来标记跨多行中间的等式tabular
,或者gathered
:
\documentclass[leqno]{report}
\usepackage{amsthm,amsmath}
\newtheorem{lemma}{Lemma}
\renewcommand{\thelemma}{\thesection.\arabic{lemma}}
\renewcommand{\theequation}{\thesection.\arabic{equation}}
\begin{document}
\chapter{A chapter}
\section{A section}
\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such that
\begin{equation}
\begin{gathered}
\text{$\rho > 0$ on $X^\circ$, $\rho = 0$ on $\partial X$ and} \\
\text{in local coordinates at $p \in \partial X$, $\rho = a(x) x_1 \dots x_k$, $a(p) > 0$}
\end{gathered}
\end{equation}
where $a$ is smooth.
\end{lemma}
\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such that
\begin{equation}
\begin{tabular}{c}
$\rho > 0$ on $X^\circ$, $\rho = 0$ on $\partial X$ and \\
in local coordinates at $p \in \partial X$, $\rho = a(x) x_1 \dots x_k$, $a(p) > 0$
\end{tabular}
\end{equation}
where $a$ is smooth.
\end{lemma}
\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such that
\setlength{\abovedisplayskip}{0pt}
\setlength{\belowdisplayskip}{0pt}
\begin{equation}
\begin{tabular}{c}
$\rho > 0$ on $X^\circ$, $\rho = 0$ on $\partial X$ and \\
in local coordinates at $p \in \partial X$, $\rho = a(x) x_1 \dots x_k$, $a(p) > 0$
\end{tabular}
\end{equation}
where $a$ is smooth.
\end{lemma}
\end{document}
最后一个选项(引理 1.1.3)提供了某种方法来删除方程上方/下方引入的垂直间距。这可能是必要的,因为引理是作为单个段落/句子(带有一些编号)编写的。
答案2
只是为了好玩。顺便说一句,centertags
这里没用过。我只是想提醒一下。
\documentclass{article}
\usepackage[leqno,centertags]{amsmath}
\newtheorem{lemma}{Lemma}
\begin{document}
\begin{lemma}
On any $t-$manifold there exist $\rho \in \mathcal{C}^{\infty}(X)$ such
that
\begin{equation}
\begin{cases}
\rho>0 & \text{on $X^\circ$} \\
\rho=0 & \text{on $\partial X$} \\
\rho=a(x)x_1\dots &\text{in local coordinates at $p \in \partial X$, $x_k$, $a(p)>0$}
\end{cases}
\end{equation}
where $a$ is smooth.
\end{lemma}
\end{document}
答案3
我建议采用以下布局alignat
:
\documentclass{book}
\usepackage[leqno]{mathtools}
\usepackage[amsmath, thmmarks]{ntheorem}
\theoremheaderfont{\scshape}
\theoremseparator{. }
\theorembodyfont{\itshape}
\newtheorem{lemma}{Lemma}[section]
\begin{document}
\setcounter{chapter}{1}
\setcounter{section}{6}
\setcounter{lemma}{1}
\begin{lemma}
On any $t$-manifold there exist $ρ ∈ \mathcal{C}^{∞}(X)$ such
that
\begin{alignat}{3}
\label{1.6.5}
& & & \rho>0 \text{ on } X^\circ, & & \rho=0 \text{ on \ } ∂ X \hspace{6em}\notag \\
& \text{and in }\rlap{local coordinates at $ p ∈ ∂ X $,}\hspace{5em} & & & \\
& & & \rho=a(x)x₁ ... x_k, & \qquad & a(p)>0 \notag
\end{alignat}
where $a$ is smooth.
\end{lemma}
\end{document}
答案4
按照以下建议,在方程环境中使用分割环境https://www.latex-project.org/help/documentation/amsldoc.pdf
\begin{equation}\begin{split}
\rho>0 \hbox{ \ on \ } X^\circ, \rho=0 \hbox{ \ on \ } \partial X
\hbox{ \ and \ } \\
\hbox{ \ in local coordinates at \ } p \in \partial X, \rho=a(x)x_1\dots
x_k, a(p)>0
\end{split}\end{equation}