如何让“长桌”占用更少的空间?

如何让“长桌”占用更少的空间?

我在使用 LaTeX 制作表格时遇到了大问题。我需要您的帮助,使下表更短、更紧凑。到目前为止,我得到的结果并不令人满意。前两列和最后一列可以合并为一列。所以,保留 3 列。句子之间的间距可以减少,如果可能的话,只在 2 页上。请帮忙。

在此处输入图片描述

代码:

%% ----------------------------------------------------------------
%% Thesis.tex -- MAIN FILE (the one that you compile with LaTeX)
%% ---------------------------------------------------------------- 

% Set up the document

\documentclass[a4paper, 11pt, arial, oneside]{Thesis}   % Use the "Thesis" document class, based on the ECS Thesis style by Steve Gunn

\usepackage{charter}
\usepackage[scaled=0.92]{helvet}
%\usepackage [T1] {fontenc}
%\renewcommand\familydefault{phv}



%\graphicspath{{figs/}}  % Location of the graphics files (set up for graphics to be in PDF format)

% Include any extra LaTeX packages required
\usepackage[square, numbers, comma, sort&compress]{natbib}  % Use the "Natbib" style for the references in the Bibliography
\usepackage{verbatim}  % Needed for the "comment" environment to make LaTeX comments
\usepackage{vector}  % Allows "\bvec{}" and "\buvec{}" for "blackboard" style bold vectors in maths
%\hypersetup{urlcolor=blue, colorlinks=true}  % Colours hyperlinks in blue, but this can be distracting if there are many links.

\usepackage[toc,page]{appendix}


\usepackage{graphicx}
\usepackage{romannum}
\usepackage{enumerate}


%\usepackage{booktabs}
%\usepackage[hmargin={30mm,25mm},vmargin=25mm]{geometry}
%\usepackage{array,ragged2e}
%\newcolumntype{R}[1]{>{\RaggedRight}p{#1}}

%\usepackage{enumitem}
%\usepackage{etoolbox}
%\AtBeginEnvironment{table}{%
%   \setlist[itemize]{  nosep,     % <-- new list setup
%       leftmargin = *,
%       before     = \vspace{-0.6\baselineskip},
%       after      = \vspace{-\baselineskip}
%   }
%}
%\usepackage{showframe}
%\usepackage{geometry}
\usepackage{ragged2e, tabularx}
\usepackage{array, booktabs, longtable, makecell, threeparttablex}
\newcolumntype{R}[1]{>{\RaggedRight\hspace{0pt}}p{#1}}
\usepackage[skip=1ex,labelfont=bf,font=small]{caption}

\usepackage[shortlabels]{enumitem}
\usepackage{etoolbox}
\AtBeginEnvironment{longtable}{%
    \small                              % for better fit text into cells
    \setlength{\LTcapwidth}{\linewidth} % that caption width is equal table width
    \setlist[itemize]{  nosep,          % <-- new list setup
        leftmargin = *,
        before     = \vspace{-\baselineskip},
        after      = \vspace{-\baselineskip}
    }
}% end of AtBeginEnvironment

\AtBeginEnvironment{table}{%
    \setlist[itemize]{nosep,
        wide,%leftmargin = *,
        before     = \vspace{-\baselineskip},
        after      = \vspace{-\baselineskip}
    }
}% end of AtBeginEnvironment

\newcolumntype{L}{>{\RaggedRight\setlength\parskip{0.2\baselineskip}\arraybackslash}X}
\setlength\extrarowheight{1pt}

\usepackage{siunitx}

\usepackage[space]{grffile}
\usepackage{latexsym}
\usepackage{textcomp}
\usepackage{longtable}
\usepackage{pdflscape}

\usepackage{multirow,booktabs}
\usepackage{amsfonts,amsmath,amssymb}
\usepackage{url}
\usepackage{hyperref}
\hypersetup{colorlinks=true,pdfborder={0 0 0},linkcolor=blue,urlcolor=blue,citecolor=red}
% You can conditionalize code for latexml or normal latex using this.
\newif\iflatexml\latexmlfalse
\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}%

\DeclareGraphicsExtensions{.pdf,.PDF,.png,.PNG,.jpg,.JPG,.jpeg,.JPEG}

%\usepackage[utf8]{inputenc}
\usepackage[british]{babel}


% correct bad hyphenation here
\hyphenation{op-tical net-works semi-conduc-tor}
\usepackage{siunitx} % For units
\newcommand\mmfeed[1]{\textcolor{red}{#1}}

\usepackage{xcolor}

\usepackage{caption}
\usepackage{subcaption}
\usepackage{lipsum}

\captionsetup[figure]{labelfont={bf,small},textfont={small}}
\captionsetup[subfloat]{labelfont={bf,small}, textfont={small}, subrefformat=parens} %<-----designing subcaption
\newcommand{\myfigref}[2]{~\ref{#1}.\subref{#2}}% <---- a new macro for referring to a subfigure
%    

%\newpage
%\bibliographystyle{plain}
%\bibliography{bibliografia}

% Change the text font
\renewcommand{\rmdefault}{phv} % Arial
\renewcommand{\sfdefault}{phv} % Arial
%



\usepackage{multirow}
\usepackage{cleveref}


% I added many usepackages
%% ----------------------------------------------------------------

\begin{document}


    \begin{longtable}{
            R{\dimexpr0.15\linewidth-2\tabcolsep}
            R{\dimexpr0.25\linewidth-2\tabcolsep}
            R{\dimexpr0.25\linewidth-2\tabcolsep}
            R{\dimexpr0.25\linewidth-2\tabcolsep}
            R{\dimexpr0.15\linewidth-4\tabcolsep}
        }

        \caption{The state-of-the-art in taxonomy, detection, extraction and pattern recognition in urban applications}
        \label{T2.5}    \\
        \toprule
        %& \multicolumn{3}{c}{Consequences of the expansion of cities}
        %\\
        %\cmidrule(lr){2-4}
        \textbf{Application} & \textbf{Taxonomy/quantification algorithms} & \textbf{Merits} & \textbf{Limitations} & \textbf{Example} 
        \\
        \midrule
        \endfirsthead
        \caption{The state-of-the-art in \dots\hfill (cont. from previous page)}
        %\\
        %\toprule
        %& \multicolumn{3}{c}{Consequences of the expansion of cities}
        %\\
        %\cmidrule(lr){2-4}
        %& Temperature  & Air quality & Water quality
        \\
        \midrule
        \endhead
        \multicolumn{4}{r}{\footnotesize\textit{continued on the next page}}
        \endfoot
        \endlastfoot
        %%%%

        Seismic building structural types (SBSTs)
        &   \begin{itemize}
            \item   Support vector machine (SVM) and random forest (RF)
        \end{itemize}
        &   \begin{itemize}
            \item   Classify the combination of different remote sensing data
            \item   Derive sets of valuable features to characterise the urban environment
            \item   Model an effective earthquake loss and spatial distribution
            \item   ABTSVM classifier outperforms other multi-class SVM classifiers
        \end{itemize}
        &   \begin{itemize}
            \item   Hierarchical supervised classification scheme has uncertainties in separating SBSTs
            \item   Performance depends on the ranked features
            \item   Accuracy is subject to the addition of further features and subset based categories
        \end{itemize} 
        &   \begin{itemize}
            \item   \cite{geiss2015}
        \end{itemize}  \\
        \midrule

        Urban change detection: landuse transitions
        &   \begin{itemize}
            \item   Scene classification with a bag-of-visual-words (BOVW)
        \end{itemize}
        &   \begin{itemize}
            \item   Obtain semantic scene classes
            \item   Effectively analyse landuse changes
            \item   Satisfactory accuracy
        \end{itemize}
        &   \begin{itemize}
            \item   Time-consuming
            \item   Very difficult to achieve the direct selection of the “from-to” samples from the dataset
            \item   Classification performance in certain cases is negatively affected by the redundancy of information
        \end{itemize} 
        &   \begin{itemize}
            \item   \cite{wu2016}
        \end{itemize}  \\
        \midrule

        Urban landcover and landuse classification
        &   \begin{itemize}
            \item   Binary tree SVM based on Jeffries–Matusita (JM) distance
        \end{itemize}
        &   \begin{itemize}
            \item   Improve classification accuracy
            \item   Classify hyperspectral images adequately
            \item   Ease of interpretation of urban classes
        \end{itemize}
        &   \begin{itemize}
            \item   Confusion between road and bare soil classes
            \item   Instability and complexity in the structure and parameters of the binary tree SVM
        \end{itemize} 
        &   \begin{itemize}
            \item   \cite{du2012}
        \end{itemize}  \\
        \midrule

        Monitoring changes in impervious surfaces
        &   \begin{itemize}
            \item   MRGU
        \end{itemize}
        &   \begin{itemize}
            \item   Integrate multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis Ord) with Moran’s I, and urban growth theories in an effective manner
            \item   Quantify and identify the magnitude of impervious surface changes and their spatial distribution
        \end{itemize}
        &   \begin{itemize}
            \item  Not universally applicable due to specific behaviour of maximum noise fraction (MNF)
            \item  Difficult to use for quantifying changes in urban centres
            \item  Performance (regression residuals) is subject to the structure of urban regions
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{shahtahmassebi2016}
        \end{itemize}  \\
        \midrule

        Change detection
        &   \begin{itemize}
            \item   Unsupervised Neural network and feature transformation
        \end{itemize}
        &   \begin{itemize}
            \item  Deep architecture (SDAE) for better representation of the relationships between feature- and pixel-pair
            \item  Mapping based FCA and function learning to highlight change in a robust manner
            \item  Denoising autoencoder
        \end{itemize}
        &   \begin{itemize}
            \item  Uncertainty in the feature-pair
            \item  High computational cost
            \item  Complexity structures of stacked denoising autoencoders (SDAE)
            \item  Many constraints are required to extract useful features
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{zhang2016}
        \end{itemize}  \\
        \midrule

        Water quality, and sustainable water resources management
        &   \begin{itemize}
            \item   Integrated data fusion and mining (IDFM) and artificial neural network (ANN)
        \end{itemize}
        &   \begin{itemize}
            \item  A near real-time monitoring and the early warning system
            \item  Efficiency
            \item  Forecasting reliability
            \item  Potential for local adoption
        \end{itemize}
        &   \begin{itemize}
            \item  Prediction accuracy may be effected by uncertainties in the fused data
            \item  A large number of variables is required to overcome the uncertainty
            \item  Not applicable for regional meteorology parameters
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{imen2015}
        \end{itemize}  \\
        \midrule

        Air temperature estimation
        &   \begin{itemize}
            \item   SVM
        \end{itemize}
        &   \begin{itemize}
            \item  Fully automated method
            \item  SVM regression is robust
            \item  Regression errors can be modelled at the pixel level, improving accuracy estimation
        \end{itemize}
        &   \begin{itemize}
            \item  Requires expert users to apply SVM
            \item  Does not work well under non cloud-free conditions and require in situ measurements
            \item  Regression error distribution is insufficient
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{moser2015}
        \end{itemize}  \\
        \midrule

        Fine-scale population estimation for urban management, emergency response and epidemiological
        &   \begin{itemize}
            \item RF
            \item Linear regression modelling
        \end{itemize}
        &   \begin{itemize}
            \item  Able to classify building types and extract their footprints in the heterogeneous urban areas
            \item  Improved classification accuracy
            \item  Ease of adoption
        \end{itemize}
        &   \begin{itemize}
            \item  Subject to the accuracy of the selected morphology filter
            \item  Use of large numbers of metrics and variables for building type classification
            \item  Building background metrics do not show its advantage in the block classification
            \item  Classification uncertainty for non-residential buildings
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{xie2015}
        \end{itemize}  \\
        \midrule

        Renewable energy and urban feature extraction
        &   \begin{itemize}
            \item Shadow detection and building geometry identification
        \end{itemize}
        &   \begin{itemize}
            \item  Easy to apply
            \item  Sufficient to generate 3D model of urban buildings
            \item  Reliable analysis of the solar energy potential
            \item  Identify the availability of 3D surfaces
            \item  Flexibility and feasibility
        \end{itemize}
        &   \begin{itemize}
            \item  Not fully automated
            \item  Not suitable for dense urban areas
            \item  Sensitive to the quality of satellite images
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{kadhim2015a}
        \end{itemize}  \\
        \midrule

        Impervious surfaces estimation
        &   \begin{itemize}
            \item SVM 
            \item RF
        \end{itemize}
        &   \begin{itemize}
            \item  Increased classification accuracy
            \item  Does not depend on combinations of features
            \item  Data can be fused to optimise parameters efficiently
            \item  Ease of application
        \end{itemize}
        &   \begin{itemize}
            \item  Needs many texture matrices
            \item  Inability to handle the confusion in shaded areas and bare soil
            \item  Over-fitting
        \end{itemize} 
        &   \begin{itemize}
            \item  \cite{zhang2015}
        \end{itemize}  \\
        \midrule

    \end{longtable}
\end{document}

答案1

不知道哪个您所采用的文档类别数量几乎是无限的Thesis,以下解决方案将使用report文档类别,并假设纸张大小为 A4,边距为 2.5 厘米。显然,您可以根据需要随意调整这些设置。

我的主要建议是将第 1、2 和 5 列变窄,相反,将第 3 和第 4 列变宽。这样,确实可以将其longtable放在两整页上。

itemize除非列表中确实有多个项目,否则我不会在第二列中使用环境。

\documentclass[a4paper,11pt,arial,oneside]{report}%{Thesis} % which "Thesis"?!

\usepackage[a4paper,margin=2.5cm]{geometry} % choose page parameters suitably


%\usepackage{charter}  % no need to load this package, right?
\usepackage[scaled=0.92]{helvet}
\usepackage[T1]{fontenc}
\renewcommand\familydefault{\sfdefault} % use Helvetica as main text font

\usepackage[square, numbers, comma, sort&compress]{natbib}
\usepackage{verbatim,vector}
\usepackage[toc,page]{appendix}


\usepackage{graphicx,romannum}

\usepackage{ragged2e, tabularx}
\usepackage{array, booktabs, longtable, makecell, threeparttablex}
\newcolumntype{R}[1]{>{\RaggedRight\hspace{0pt}\arraybackslash}p{#1}}
\usepackage[skip=1ex,labelfont=bf,font=small]{caption}

\usepackage[shortlabels]{enumitem}
\usepackage{etoolbox}
\AtBeginEnvironment{longtable}{%
    \small        
    \setlength{\LTcapwidth}{\linewidth}
    \setlist[itemize]{  nosep,          % <-- new list setup
        leftmargin = *,
        before     = \vspace{-\baselineskip},
        after      = \vspace{-\baselineskip}
    }
}

\AtBeginEnvironment{table}{%
    \setlist[itemize]{nosep,
        wide,%leftmargin = *,
        before     = \vspace{-\baselineskip},
        after      = \vspace{-\baselineskip}
    }
}

\setlength\extrarowheight{1pt}

\usepackage{siunitx}

\usepackage[space]{grffile}
%%%%\usepackage{latexsym} % deprecated and superseded by "amssymb"
\usepackage{textcomp}
\usepackage{longtable}
\usepackage{pdflscape}

\usepackage{multirow,booktabs}
\usepackage{amsfonts,amsmath,amssymb}

% You can conditionalize code for latexml or normal latex using this.
\newif\iflatexml\latexmlfalse
\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}%

\usepackage[utf8]{inputenc}
\usepackage[british]{babel}


% correct bad hyphenation here
\hyphenation{op-tical net-works semi-conduc-tor quan-ti-fi-ca-tion}
\usepackage{siunitx} % For units
\newcommand\mmfeed[1]{\textcolor{red}{#1}}

\usepackage{xcolor}

\usepackage{caption}
\usepackage{subcaption}
\usepackage{lipsum}

\captionsetup[figure]{labelfont={bf,small},textfont={small},
                      skip=0.333\baselineskip}
\captionsetup[subfloat]{labelfont={bf,small}, textfont={small},
                        subrefformat=parens} 
\newcommand{\myfigref}[2]{~\ref{#1}.\subref{#2}}

\usepackage{url}
\usepackage{hyperref}  % load this package (almost) last
\hypersetup{colorlinks=true,
            %pdfborder={0 0 0},
            linkcolor=blue,urlcolor=blue,citecolor=red}
\usepackage{cleveref}

\begin{document}

\begin{longtable}{@{}
            R{\dimexpr0.15\linewidth-1\tabcolsep}
            R{\dimexpr0.15\linewidth-2\tabcolsep}
            R{\dimexpr0.30\linewidth-2\tabcolsep}
            R{\dimexpr0.30\linewidth-2\tabcolsep}
            R{\dimexpr0.10\linewidth-1\tabcolsep} 
            @{}}

        \caption{State-of-the-art in taxonomy, detection, extraction 
             and pattern recognition in urban applications}
        \label{T2.5}    \\
        \toprule
        \textbf{Application} & \textbf{Taxonomy\slash quantification algorithms} & \textbf{Merits} & \textbf{Limitations} & \textbf{Example} \\
        \midrule
        \endfirsthead

        \caption{The state-of-the-art in \dots\hfill (cont.\ from previous page)} \\
        \midrule
        \endhead

        \multicolumn{5}{r@{}}{\footnotesize\textit{continued on the next page}}
        \endfoot

        \bottomrule
        \endlastfoot

        %%%%

        Seismic building structural types (SBSTs)
        &  Support vector machine (SVM) and random forest (RF)
        &   \begin{itemize}
            \item   Classify the combination of different remote sensing data
            \item   Derive sets of valuable features to characterise the urban environment
            \item   Model an effective earthquake loss and spatial distribution
            \item   ABTSVM classifier outperforms other multi-class SVM classifiers
        \end{itemize}
        &   \begin{itemize}
            \item   Hierarchical supervised classification scheme has uncertainties in separating SBSTs
            \item   Performance depends on the ranked features
            \item   Accuracy is subject to the addition of further features and subset based categories
        \end{itemize}
        &   \begin{itemize}
            \item   \cite{geiss2015}
        \end{itemize}  \\
        \midrule

        Urban change detection: landuse transitions
        & Scene classification with a bag-of-visual-words (BOVW)
        &   \begin{itemize}
            \item   Obtain semantic scene classes
            \item   Effectively analyse landuse changes
            \item   Satisfactory accuracy
        \end{itemize}
        &   \begin{itemize}
            \item   Time-consuming
            \item   Very difficult to achieve the direct selection of the “from-to” samples from the dataset
            \item   Classification performance in certain cases is negatively affected by the redundancy of information
        \end{itemize}
        &   \begin{itemize}
            \item   \cite{wu2016}
        \end{itemize}  \\
        \midrule

        Urban landcover and landuse classification
        & Binary tree SVM based on Jeffries--Matusita (JM) distance
        &   \begin{itemize}
            \item   Improve classification accuracy
            \item   Classify hyperspectral images adequately
            \item   Ease of interpretation of urban classes
        \end{itemize}
        &   \begin{itemize}
            \item   Confusion between road and bare soil classes
            \item   Instability and complexity in the structure and parameters of the binary tree SVM
        \end{itemize}
        &   \begin{itemize}
            \item   \cite{du2012}
        \end{itemize}  \\
        \midrule

        Monitoring changes in impervious surfaces
        & MRGU
        &   \begin{itemize}
            \item   Integrate multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis Ord) with Moran’s I, and urban growth theories in an effective manner
            \item   Quantify and identify the magnitude of impervious surface changes and their spatial distribution
        \end{itemize}
        &   \begin{itemize}
            \item  Not universally applicable due to specific behaviour of maximum noise fraction (MNF)
            \item  Difficult to use for quantifying changes in urban centres
            \item  Performance (regression residuals) is subject to the structure of urban regions
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{shahtahmassebi2016}
        \end{itemize}  \\
        \midrule

        Change detection
        & Unsupervised Neural network and feature transformation
        &   \begin{itemize}
            \item  Deep architecture (SDAE) for better representation of the relationships between feature- and pixel-pair
            \item  Mapping based FCA and function learning to highlight change in a robust manner
            \item  Denoising autoencoder
        \end{itemize}
        &   \begin{itemize}
            \item  Uncertainty in the feature-pair
            \item  High computational cost
            \item  Complexity structures of stacked denoising autoencoders (SDAE)
            \item  Many constraints are required to extract useful features
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{zhang2016}
        \end{itemize}  \\
        \midrule

        Water quality, and sustainable water resources management
        & Integrated data fusion and mining (IDFM) and artificial neural network (ANN)
        &   \begin{itemize}
            \item  A near real-time monitoring and the early warning system
            \item  Efficiency
            \item  Forecasting reliability
            \item  Potential for local adoption
        \end{itemize}
        &   \begin{itemize}
            \item  Prediction accuracy may be effected by uncertainties in the fused data
            \item  A large number of variables is required to overcome the uncertainty
            \item  Not applicable for regional meteorology parameters
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{imen2015}
        \end{itemize}  \\
        \midrule

        Air temperature estimation
        & SVM
        &   \begin{itemize}
            \item  Fully automated method
            \item  SVM regression is robust
            \item  Regression errors can be modelled at the pixel level, improving accuracy estimation
        \end{itemize}
        &   \begin{itemize}
            \item  Requires expert users to apply SVM
            \item  Does not work well under non cloud-free conditions and require in situ measurements
            \item  Regression error distribution is insufficient
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{moser2015}
        \end{itemize}  \\
        \midrule

        Fine-scale population estimation for urban management, emergency response and epidemiological
        &   \begin{itemize}
            \item RF
            \item Linear regression modelling
        \end{itemize}
        &   \begin{itemize}
            \item  Able to classify building types and extract their footprints in the heterogeneous urban areas
            \item  Improved classification accuracy
            \item  Ease of adoption
        \end{itemize}
        &   \begin{itemize}
            \item  Subject to the accuracy of the selected morphology filter
            \item  Use of large numbers of metrics and variables for building type classification
            \item  Building background metrics do not show its advantage in the block classification
            \item  Classification uncertainty for non-residential buildings
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{xie2015}
        \end{itemize}  \\
        \midrule

        Renewable energy and urban feature extraction
        & Shadow detection and building geometry identification
        &   \begin{itemize}
            \item  Easy to apply
            \item  Sufficient to generate 3D model of urban buildings
            \item  Reliable analysis of the solar energy potential
            \item  Identify the availability of 3D surfaces
            \item  Flexibility and feasibility
        \end{itemize}
        &   \begin{itemize}
            \item  Not fully automated
            \item  Not suitable for dense urban areas
            \item  Sensitive to the quality of satellite images
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{kadhim2015a}
        \end{itemize}  \\
        \midrule

        Impervious surfaces estimation
        &   \begin{itemize}
            \item SVM
            \item RF
        \end{itemize}
        &   \begin{itemize}
            \item  Increased classification accuracy
            \item  Does not depend on combinations of features
            \item  Data can be fused to optimise parameters efficiently
            \item  Ease of application
        \end{itemize}
        &   \begin{itemize}
            \item  Needs many texture matrices
            \item  Inability to handle the confusion in shaded areas and bare soil
            \item  Over-fitting
        \end{itemize}
        &   \begin{itemize}
            \item  \cite{zhang2015}
        \end{itemize}  \\

\end{longtable}

\end{document} 

相关内容