如何管理文章中的多个标题?

如何管理文章中的多个标题?

使用 titleling 包管理多个标题和摘要会导致作者姓名和所属机构向右移动。如何修复?

在此处输入图片描述

\documentclass[a4paper,11pt]{article}
\usepackage{titling}

\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}

\newenvironment{keywords}{\noindent\textbf{Keywords:}}{}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in


\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{\text{#1}}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{\text{#1}}}
\newcommand\@category{}
\setlength{\droptitle}{-5cm}
\pretitle{\begin{center} \huge}
\posttitle{\par\end{center}\vspace{\baselineskip}}
\preauthor{\normalfont\normalsize\begin{center}\begin{tabular}[t]{c}}
\postauthor{\end{tabular}\end{center}\vspace{\baselineskip}}

\renewcommand{\maketitle}{%
    \begin{minipage}{.5\textwidth}
        %       \raggedright
        $\begin{array}{lcl}
        \text{Unique Id} & :& \@uniqueid  \\
        \text{Category} & : & \@category  \\
        \end{array} $
    \end{minipage}
    \begin{minipage}{.5\textwidth}
        \raggedleft
        Received on : \@receivedon \\
        Accepted on : \@acceptedon
    \end{minipage}
    \vskip 1.5em%
    \begin{center}%
        \let \footnote \thanks
        {\LARGE \@title \par}%
        \vskip 1.5em%
        {\large
            \lineskip .5em%
            \begin{tabular}[t]{c}%
                \@author 
            \end{tabular}\par}%
        \vskip 1em%
        %{\large \@date}%
    \end{center}%
    \par
    \vskip 1.5em}
\makeatother





\begin{document}


\part{Abstracts of the Invited Speakers}

\input{InvitedAbstracts/17ICLAA104Abstract}


\clearpage 

\part{Abstracts of the Contributed Speakers}

\input{ContributedAbstracts/17ICLAA064Abstract}

\input{ContributedAbstracts/17ICLAA068Abstract}



\end{document}

输入文件是,

% % % % %--------------------------------------------------------------------
% % % % %          Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % %         Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------

\author{\underline{M. Seetharama Gowda}}

\affil{Department of Mathematics and Statistics, University of Maryland,
    Baltimore County, Baltimore, Maryland 21250, USA\\ 

    \email{[email protected]}}


% % % % %--------------------------------------------------------------------
    \receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}  

\maketitle

\begin{abstract}
    In matrix theory, various algebraic, fixed point, and degree theory methods have been used to study the solvability of equations of the form $f(X) = Q$, where $f$ is a transformation (possibly nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies over the cone of
    semidefinite matrices. In this talk, we describe a new method based on complementarity ideas. This method gives a unified treatment for transformations studied by Lyapunov, Stein, Lim, Hiller and Johnson, and others. Our method actually works in a more general setting of proper cones and, in particular, on symmetric cones in Euclidean
    Jordan algebras.
\end{abstract}

\begin{keywords}
    solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}

\begin{classification}
    15A24, 90C33
\end{classification}
\begin{thebibliography}{100}
    \bibitem{MGD} Gowda, M. Seetharama, David Sossa, and Av Libertador Bernardo O’Higgins. ``Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones.'' (2016). (http://www.optimization-online.org$/DB_HTML/2017/04/5952.$html).
\end{thebibliography}



    % % % % %--------------------------------------------------------------------
    % % % % %          Title of the Paper and Acknowledgement
    % % % % %--------------------------------------------------------------------
        \title{Stability and convex hulls of matrix powers
        %\thanks{Acknowledgement: The authors thanks the support of so and so project/funding \dots}
        }
    % % % % %--------------------------------------------------------------------
    % % % % %         Authors,, Affiliations and email ids
    % % % % %--------------------------------------------------------------------

    \author[1]{Patrick K. Torres}
    \author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting  Author.}}
    %\author[3]{Author C}  % Author having same Affiliation that of Author A
    %\author[4]{Author D}
    \affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{[email protected]}, $^2$\email{[email protected]}}
    %\affil[3] {Affiliation of Author C. \email{[email protected]}}
    %\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{[email protected]}}
    % % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}  

        \maketitle

    \begin{abstract}
    Invertibility of all convex combinations of a matrix $A$ and the identity matrix $I$ is equivalent to the real eigenvalues of $A$, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of $A$ and $I$ is equivalent to all of the principal minors of $A$ being positive (i.e., $A$ being a P-matrix). These results are 
    extended to convex combinations of higher powers of $A$ and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of $A$ lying in open sectors of the right-half plane. The ensuing analysis provides a new context for open problems in the theory of matrices with P-matrix powers.
    \end{abstract}

    \begin{keywords}
    P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
    \end{keywords}

    \begin{classification}
    15A48; 15A15
    \end{classification}

    \begin{thebibliography}{100}

    \bibitem{bepl:94}
    A.~Berman and R.~J. Plemmons, {\em Nonnegative Matrices in the
        Mathematical Sciences.} 1994: SIAM, Philadelphia.

    \bibitem{fipt:62}
    M.~Fiedler and V.~Pt\'{a}k.
    On matrices with non-positive off-diagonal elements and
    positive principal minors. {\em Czechoslovak Mathematical Journal}, 22:382--400, 1962.

    \bibitem{fipt:66}
    M.~Fiedler and V.~Pt\'{a}k. Some generalizations of positive definiteness
    and monotonicity. {\em Numerische Mathematik}, 9:163--172, 1966. 

    \bibitem{fhs}
    S.~Friedland, D.~Hershkowitz, and H.~Schneider.
    {\em Matrices whose powers are M-matrices or Z-matrices},
    Transactions of the American Mathematical Society,
    300:233--244, 1988.

    \bibitem{hejo}
    D.~Hershkowitz and C.R.~Johnson.
    {\em Spectra of matrices with P-matrix powers},
    {\em Linear Algebra and its Applications}, 80:159--171, 1986.

    \bibitem{hk}
    D. Hershkowitz and N. Keller. 
    {\em Positivity of principal minors, sign symmetry and stability}, 
    Linear Algebra and its Applications, 364:105--124, 2003.

    \bibitem{hojo:90}
    R.A.~Horn and C.R.~Johnson.
    {\em Matrix Analysis} 1990: Cambridge University Press.

    \bibitem{hojo:91}
    R.A.~Horn and C.R.~Johnson. 
    {\em Topics in Matrix Analysis} 1991: Cambridge University Press.

    \bibitem{jotv1}
    C.R.~Johnson, D.D.~Olesky, M.~Tsatsomeros, and P.~van den Driessche.
    {\em Spectra with positive elementary symmetric functions},
    Linear Algebra and Its Applications, 180:247--262, 1993.

    \bibitem{jt}
    C.R.~Johnson and M.J.~Tsatsomeros.
    {\em Convex sets of nonsingular and P-matrices},
    Linear and Multilinear Algebra, 38:233--239, 1995.

    \bibitem{kell:72}
    R.~Kellogg.
    {\em On Complex eigenvalues of M and P matrices},
    Numerische Mathematik, 19:170--175, 1972.

    \bibitem{Kushel}
    Volha Y. Kushel.
    {\em On the positive stability of $P^2$-matrices},
    Linear Algebra and Its Applications, 503:190--214, 2016.

    \bibitem{pena}
    J.M.~Pena.
    {\em A class of P-matrices with applications to the localization of the
    eigenvalues of a real matrix},
    SIAM Journal on Matrix Analysis and Applications, 22:1027--1037, 2001.

    \end{thebibliography}

答案1

您的示例使用了该titling包,但后来通过重新定义标题将所有内容都丢弃了。不要因为包自身的错误而责怪它。

作者被设置在c单元格中,单元格永远不会被拆分。要么使用宽度有限的单元格作为段落,要么使用。或者使用常规表格中的parbox行分隔符来添加手动换行符。\\

\documentclass[a4paper,11pt]{article}

\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}
\usepackage{showframe}

\newenvironment{keywords}{\noindent\textbf{Keywords:}}{\par}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{\par}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in


\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}% <- this will fail
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{#1}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{#1}}
\newcommand\@category{}

\renewcommand{\maketitle}{%
\noindent\begin{minipage}{.5\textwidth}%
        %       \raggedright
    \begin{tabular}{@{}l@{ : }l}
        \text{Unique Id} & \@uniqueid  \\
        \text{Category}  & \@category  \\
        \end{tabular} 
    \end{minipage}%
    \begin{minipage}{.5\textwidth}
        \raggedleft
        Received on : \@receivedon \\
        Accepted on : \@acceptedon
    \end{minipage}
    \vskip 1.5em%
    \begin{center}%
        \let \footnote \thanks
        {\LARGE \@title \par}%
        \vskip 1.5em%
        {\large
            \lineskip .5em%
        \parbox{.8\linewidth}{% <----------- parbox here
            \centering
                \@author 
            }%
        }
        \vskip 1em%
        %{\large \@date}%
    \end{center}%
    \par
    \vskip 1.5em}

\makeatother




\begin{document}

% % % % %--------------------------------------------------------------------
% % % % %          Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % %         Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------

\author{\underline{M. Seetharama Gowda}}

\affil{Department of Mathematics and Statistics,\\ University of Maryland,
    Baltimore County, Baltimore, Maryland 21250, USA\\ 

    \email{[email protected]}}


% % % % %--------------------------------------------------------------------
    \receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}  

\maketitle

\begin{abstract}
In matrix theory, various algebraic, fixed point, and degree theory
methods have been used to study the solvability of equations of the
form $f(X) = Q$, where $f$ is a transformation (possibly
nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies
over the cone of semidefinite matrices. In this talk, we describe a
new method based on complementarity ideas. This method gives a
unified treatment for transformations studied by Lyapunov, Stein,
Lim, Hiller and Johnson, and others. Our method actually works in a
more general setting of proper cones and, in particular, on
symmetric cones in Euclidean Jordan algebras.
\end{abstract}

\begin{keywords}
    solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}

\begin{classification}
    15A24, 90C33
\end{classification}



\title{Stability and convex hulls of matrix powers}

    \author[1]{Patrick K. Torres}
    \author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting  Author.}}
    %\author[3]{Author C}  % Author having same Affiliation that of Author A
    %\author[4]{Author D}
    \affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{[email protected]}, $^2$\email{[email protected]}}
    %\affil[3] {Affiliation of Author C. \email{[email protected]}}
    %\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{[email protected]}}
    % % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}  

\maketitle

\begin{abstract}
Invertibility of all convex combinations of a matrix $A$ and the
identity matrix $I$ is equivalent to the real eigenvalues of
$A$, if any, being positive. Invertibility of all matrices
whose rows are convex combinations of the respective rows of
$A$ and $I$ is equivalent to all of the principal minors of $A$
being positive (i.e., $A$ being a P-matrix). These results are
extended to convex combinations of higher powers of $A$ and of
their rows. The invertibility of matrices in these convex hulls
is associated with the eigenvalues of $A$ lying in open sectors
of the right-half plane. The ensuing analysis provides a new
context for open problems in the theory of matrices with
P-matrix powers.
\end{abstract}

\begin{keywords}
        P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
\end{keywords}

\begin{classification}
        15A48; 15A15
\end{classification}


\end{document}

您应该使用包geometry来指定页面尺寸和类型区域。

相关内容