使用 titleling 包管理多个标题和摘要会导致作者姓名和所属机构向右移动。如何修复?
\documentclass[a4paper,11pt]{article}
\usepackage{titling}
\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}
\newenvironment{keywords}{\noindent\textbf{Keywords:}}{}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in
\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{\text{#1}}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{\text{#1}}}
\newcommand\@category{}
\setlength{\droptitle}{-5cm}
\pretitle{\begin{center} \huge}
\posttitle{\par\end{center}\vspace{\baselineskip}}
\preauthor{\normalfont\normalsize\begin{center}\begin{tabular}[t]{c}}
\postauthor{\end{tabular}\end{center}\vspace{\baselineskip}}
\renewcommand{\maketitle}{%
\begin{minipage}{.5\textwidth}
% \raggedright
$\begin{array}{lcl}
\text{Unique Id} & :& \@uniqueid \\
\text{Category} & : & \@category \\
\end{array} $
\end{minipage}
\begin{minipage}{.5\textwidth}
\raggedleft
Received on : \@receivedon \\
Accepted on : \@acceptedon
\end{minipage}
\vskip 1.5em%
\begin{center}%
\let \footnote \thanks
{\LARGE \@title \par}%
\vskip 1.5em%
{\large
\lineskip .5em%
\begin{tabular}[t]{c}%
\@author
\end{tabular}\par}%
\vskip 1em%
%{\large \@date}%
\end{center}%
\par
\vskip 1.5em}
\makeatother
\begin{document}
\part{Abstracts of the Invited Speakers}
\input{InvitedAbstracts/17ICLAA104Abstract}
\clearpage
\part{Abstracts of the Contributed Speakers}
\input{ContributedAbstracts/17ICLAA064Abstract}
\input{ContributedAbstracts/17ICLAA068Abstract}
\end{document}
输入文件是,
% % % % %--------------------------------------------------------------------
% % % % % Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % % Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------
\author{\underline{M. Seetharama Gowda}}
\affil{Department of Mathematics and Statistics, University of Maryland,
Baltimore County, Baltimore, Maryland 21250, USA\\
\email{[email protected]}}
% % % % %--------------------------------------------------------------------
\receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}
\maketitle
\begin{abstract}
In matrix theory, various algebraic, fixed point, and degree theory methods have been used to study the solvability of equations of the form $f(X) = Q$, where $f$ is a transformation (possibly nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies over the cone of
semidefinite matrices. In this talk, we describe a new method based on complementarity ideas. This method gives a unified treatment for transformations studied by Lyapunov, Stein, Lim, Hiller and Johnson, and others. Our method actually works in a more general setting of proper cones and, in particular, on symmetric cones in Euclidean
Jordan algebras.
\end{abstract}
\begin{keywords}
solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}
\begin{classification}
15A24, 90C33
\end{classification}
\begin{thebibliography}{100}
\bibitem{MGD} Gowda, M. Seetharama, David Sossa, and Av Libertador Bernardo O’Higgins. ``Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones.'' (2016). (http://www.optimization-online.org$/DB_HTML/2017/04/5952.$html).
\end{thebibliography}
% % % % %--------------------------------------------------------------------
% % % % % Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{Stability and convex hulls of matrix powers
%\thanks{Acknowledgement: The authors thanks the support of so and so project/funding \dots}
}
% % % % %--------------------------------------------------------------------
% % % % % Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------
\author[1]{Patrick K. Torres}
\author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting Author.}}
%\author[3]{Author C} % Author having same Affiliation that of Author A
%\author[4]{Author D}
\affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{[email protected]}, $^2$\email{[email protected]}}
%\affil[3] {Affiliation of Author C. \email{[email protected]}}
%\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{[email protected]}}
% % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}
\maketitle
\begin{abstract}
Invertibility of all convex combinations of a matrix $A$ and the identity matrix $I$ is equivalent to the real eigenvalues of $A$, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of $A$ and $I$ is equivalent to all of the principal minors of $A$ being positive (i.e., $A$ being a P-matrix). These results are
extended to convex combinations of higher powers of $A$ and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of $A$ lying in open sectors of the right-half plane. The ensuing analysis provides a new context for open problems in the theory of matrices with P-matrix powers.
\end{abstract}
\begin{keywords}
P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
\end{keywords}
\begin{classification}
15A48; 15A15
\end{classification}
\begin{thebibliography}{100}
\bibitem{bepl:94}
A.~Berman and R.~J. Plemmons, {\em Nonnegative Matrices in the
Mathematical Sciences.} 1994: SIAM, Philadelphia.
\bibitem{fipt:62}
M.~Fiedler and V.~Pt\'{a}k.
On matrices with non-positive off-diagonal elements and
positive principal minors. {\em Czechoslovak Mathematical Journal}, 22:382--400, 1962.
\bibitem{fipt:66}
M.~Fiedler and V.~Pt\'{a}k. Some generalizations of positive definiteness
and monotonicity. {\em Numerische Mathematik}, 9:163--172, 1966.
\bibitem{fhs}
S.~Friedland, D.~Hershkowitz, and H.~Schneider.
{\em Matrices whose powers are M-matrices or Z-matrices},
Transactions of the American Mathematical Society,
300:233--244, 1988.
\bibitem{hejo}
D.~Hershkowitz and C.R.~Johnson.
{\em Spectra of matrices with P-matrix powers},
{\em Linear Algebra and its Applications}, 80:159--171, 1986.
\bibitem{hk}
D. Hershkowitz and N. Keller.
{\em Positivity of principal minors, sign symmetry and stability},
Linear Algebra and its Applications, 364:105--124, 2003.
\bibitem{hojo:90}
R.A.~Horn and C.R.~Johnson.
{\em Matrix Analysis} 1990: Cambridge University Press.
\bibitem{hojo:91}
R.A.~Horn and C.R.~Johnson.
{\em Topics in Matrix Analysis} 1991: Cambridge University Press.
\bibitem{jotv1}
C.R.~Johnson, D.D.~Olesky, M.~Tsatsomeros, and P.~van den Driessche.
{\em Spectra with positive elementary symmetric functions},
Linear Algebra and Its Applications, 180:247--262, 1993.
\bibitem{jt}
C.R.~Johnson and M.J.~Tsatsomeros.
{\em Convex sets of nonsingular and P-matrices},
Linear and Multilinear Algebra, 38:233--239, 1995.
\bibitem{kell:72}
R.~Kellogg.
{\em On Complex eigenvalues of M and P matrices},
Numerische Mathematik, 19:170--175, 1972.
\bibitem{Kushel}
Volha Y. Kushel.
{\em On the positive stability of $P^2$-matrices},
Linear Algebra and Its Applications, 503:190--214, 2016.
\bibitem{pena}
J.M.~Pena.
{\em A class of P-matrices with applications to the localization of the
eigenvalues of a real matrix},
SIAM Journal on Matrix Analysis and Applications, 22:1027--1037, 2001.
\end{thebibliography}
答案1
您的示例使用了该titling
包,但后来通过重新定义标题将所有内容都丢弃了。不要因为包自身的错误而责怪它。
作者被设置在c
单元格中,单元格永远不会被拆分。要么使用宽度有限的单元格作为段落,要么使用。或者使用常规表格中的parbox
行分隔符来添加手动换行符。\\
\documentclass[a4paper,11pt]{article}
\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}
\usepackage{showframe}
\newenvironment{keywords}{\noindent\textbf{Keywords:}}{\par}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{\par}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in
\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}% <- this will fail
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{#1}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{#1}}
\newcommand\@category{}
\renewcommand{\maketitle}{%
\noindent\begin{minipage}{.5\textwidth}%
% \raggedright
\begin{tabular}{@{}l@{ : }l}
\text{Unique Id} & \@uniqueid \\
\text{Category} & \@category \\
\end{tabular}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\raggedleft
Received on : \@receivedon \\
Accepted on : \@acceptedon
\end{minipage}
\vskip 1.5em%
\begin{center}%
\let \footnote \thanks
{\LARGE \@title \par}%
\vskip 1.5em%
{\large
\lineskip .5em%
\parbox{.8\linewidth}{% <----------- parbox here
\centering
\@author
}%
}
\vskip 1em%
%{\large \@date}%
\end{center}%
\par
\vskip 1.5em}
\makeatother
\begin{document}
% % % % %--------------------------------------------------------------------
% % % % % Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % % Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------
\author{\underline{M. Seetharama Gowda}}
\affil{Department of Mathematics and Statistics,\\ University of Maryland,
Baltimore County, Baltimore, Maryland 21250, USA\\
\email{[email protected]}}
% % % % %--------------------------------------------------------------------
\receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}
\maketitle
\begin{abstract}
In matrix theory, various algebraic, fixed point, and degree theory
methods have been used to study the solvability of equations of the
form $f(X) = Q$, where $f$ is a transformation (possibly
nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies
over the cone of semidefinite matrices. In this talk, we describe a
new method based on complementarity ideas. This method gives a
unified treatment for transformations studied by Lyapunov, Stein,
Lim, Hiller and Johnson, and others. Our method actually works in a
more general setting of proper cones and, in particular, on
symmetric cones in Euclidean Jordan algebras.
\end{abstract}
\begin{keywords}
solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}
\begin{classification}
15A24, 90C33
\end{classification}
\title{Stability and convex hulls of matrix powers}
\author[1]{Patrick K. Torres}
\author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting Author.}}
%\author[3]{Author C} % Author having same Affiliation that of Author A
%\author[4]{Author D}
\affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{[email protected]}, $^2$\email{[email protected]}}
%\affil[3] {Affiliation of Author C. \email{[email protected]}}
%\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{[email protected]}}
% % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}
\maketitle
\begin{abstract}
Invertibility of all convex combinations of a matrix $A$ and the
identity matrix $I$ is equivalent to the real eigenvalues of
$A$, if any, being positive. Invertibility of all matrices
whose rows are convex combinations of the respective rows of
$A$ and $I$ is equivalent to all of the principal minors of $A$
being positive (i.e., $A$ being a P-matrix). These results are
extended to convex combinations of higher powers of $A$ and of
their rows. The invertibility of matrices in these convex hulls
is associated with the eigenvalues of $A$ lying in open sectors
of the right-half plane. The ensuing analysis provides a new
context for open problems in the theory of matrices with
P-matrix powers.
\end{abstract}
\begin{keywords}
P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
\end{keywords}
\begin{classification}
15A48; 15A15
\end{classification}
\end{document}
您应该使用包geometry
来指定页面尺寸和类型区域。