我厌倦了纠正最后两列及其多行的对齐方式
我想
21 dimensions reduced to 9 dimensions
恰好并排
Combine accuracy
of 9 dimensional reduced
Feature Vector is 80\%
相似地
9 dimensions Further
reduced to 7 dimensions
并肩而立
Combine accuracy
of 7 dimensional reduced
Feature Vector is 88\%
最后一排也一样
\documentclass[journal]{IEEEtran}
%\usepackage{array} % loaded twice
\usepackage{multicol}
\usepackage{graphicx}
\usepackage{rotating}% added, for rothead
\usepackage{array, makecell, multirow, tabu}%merged in one line
%\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} % not used
%\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\arraybackslash}m{#1}}% in this table is better use this definition
\begin{document}
\begin{table*}
\settowidth\rotheadsize{DIMENSIONS}
\renewcommand\multirowsetup{\centering}
\renewcommand{\arraystretch}{1.5}
\centering
\caption{Extreme Learning Machine(ELM) with kernel classifier accuracy of
combine reduced feature vectors whose individual classifier accuracy was low}
\begin{tabular}{|l|l|r|C{1.5cm}|C{1.5cm}|C{1.5cm}|C{2cm}|C{2.5cm}|}
\hline
Algorithm
& Dimension
& \multirow{6}{*}{\rothead{ADD THESE\\ DIMENSIONS}}
& Total after Adding Dimensions
& Classifier
& Dimension Reduction Technique
& Reduced Dimension
& Accuracy \\
\cline{1-2} \cline{4-8}
LBP & 4D &
& \multirow{5}{=}{4D + 6D + 4D\\ + 3D + 4D = 21D}
& \multirow{5}{=}{ELM with RBF kernel}
& \multirow{4}{=}{Eigenvalue as Dimension Estimator,
PCA as Dimension Reduction}
& \multirow{4}{=}{21 dimensions reduced to 9
dimensions} \newline
& \multirow{4}{=}{Combine accuracy
of 9 dimensional reduced
Feature Vector is
80\%}\smallskip\newline \\
\cline{1-2}
RGLBP & 6D & & & & &\multirow{5}{=}{9 dimensions Further
reduced to 7 dimensions}
&\multirow{5}{=}{Combine accuracy
of 7 dimensional
reduced
Feature Vector is
88\% } \newline \\
\cline{1-2}
BDIP & 4D & & & & &\multirow{7}{=}{7 dimensions Further
reduced to 6 dimensions}
&\multirow{7}{=}{Combine accuracy of 6
dimensional reduced
Feature Vector is 100\% }\newline \\
\cline{1-2}
HOG & 3D & & & & & & \\
\cline{1-2}
Combine and & 4D & & & & & & \\
reduced fv of & & & & & & & \\
poor individual & & & & & & & \\
accuracy algorithms & & & & & & & \\
\hline
\end{tabular}
\label{table:table6}
\end{table*}
\end{document}
答案1
我认为,您不需要为对齐而烦恼,而是可以通过 s中的 s\multirow
更轻松地实现所需的输出。tabular
tabular
\documentclass[journal]{IEEEtran}
\usepackage{multicol}
\usepackage{graphicx}
\usepackage{array, makecell}
\renewcommand{\arraystretch}{1.5}
\newcolumntype{L}[1]{>{\raggedright\arraybackslash}p{#1}}
\newcolumntype{C}[1]{>{\centering\arraybackslash}m{#1}}% in this table is better use this definition
\newcolumntype{P}[1]{>{\centering\arraybackslash}p{#1}}
\begin{document}
\begin{table*}
\centering
\caption{Extreme Learning Machine(ELM) with kernel classifier accuracy of
combine reduced feature vectors whose individual classifier accuracy was
low\label{table:table6}}
\begin{tabular}{|L{2cm}|L{1.3cm}|r|C{2.2cm}|C{1.5cm}|C{1.5cm}|C{2cm}|C{2.5cm}|}
\hline
Algorithm
& Dimension
& & Total after Adding Dimensions
& Classifier
& Dimension Reduction Technique
& Reduced Dimension
& Accuracy \\
\cline{1-2} \cline{4-8}
\multicolumn{2}{@{}c@{}}{% first "sub"-table
\begin{tabular}{|L{2cm}|L{1.3cm}|}
LBP & 4D \\[4.1pt]
\hline
RGLBP & 6D \\[4.1pt]
\hline
BDIP & 4D \\[4.1pt]
\hline
HOG & 3D \\[4.1pt]
\hline
Combine and reduced fv of poor individual accuracy algorithms & 4D \\
\end{tabular}%
}
& \rotatebox[origin=c]{90}{\makecell{ADD THESE\\ DIMENSIONS}}
& \multicolumn{5}{@{}c@{}}{% second "sub"-table
\begin{tabular}{C{2.2cm}|C{1.5cm}|C{1.5cm}|C{2cm}|C{2.5cm}|}
\makecell{4D + 6D + 4D\\ + 3D + 4D = 21D}
& ELM with RBF kernel
& Eigenvalue as Dimension Estimator, PCA as Dimension Reduction
& \multicolumn{2}{@{}c@{}}{% third "sub"-table (sub-table of the second sub-table)
\begin{tabular}{P{2cm}|P{2.5cm}|}
21 dimensions reduced to 9 dimensions
& Combine accuracy of 9 dimensional reduced Feature Vector is 80\% \\
9 dimensions Further reduced to 7 dimensions
& Combine accuracy of 7 dimensional reduced Feature Vector is 88\% \\
7 dimensions Further reduced to 6 dimensions
& Combine accuracy of 6 dimensional reduced Feature Vector is 100\% \\
\end{tabular}%
}
\end{tabular}
} \\
\hline
\end{tabular}
\end{table*}
\end{document}