表格自动调整至表格

表格自动调整至表格

我在使用 LaTeX 时总是遇到这个问题,但我不知道如何让表格完全适合表格。如果能自动完成就好了。

我有以下代码:

\begin{tabular}{llllll}
\hline
\textbf{Study name}                                                                                                             & \textbf{Cohort dimension} & \textbf{Time before AF onset} & \textbf{ECG features}                                                                                                                                                                                       & \textbf{Used metric}                                    & \textbf{Model (accuracy)}                                                                           \\ \hline
Study on P-wave feature Time Course as Early Prediction of Paroxysmal AF                                                        & 24 patients               & 2h                            & \begin{tabular}[c]{@{}l@{}}- P-wave durations\\ - PR interval\\ - Heart rate\end{tabular}                                                                                                                   & Linear regression slope of the variability              & Linear discriminant (90.79\%)                                                                       \\
Morphological Variability of the P-wave for Premature Envision of Paroxysmal AF Events                                          & 46 patients + 53 controls & 2h                            & - P-wave area, energy, conduction velocity, dispersion, arc-length                                                                                                                                          & Linear regression slope of the variability              & Decision tree (86.33\%)                                                                             \\
Gaussian modelling of the P-wave morphology time course applied to anticipate paroxysmal atrial fibrillation                    & 46 patients + 53 controls & 2h                            & \begin{tabular}[c]{@{}l@{}}- Gaussian fit parameters\\ - Error between fitted Gaussian and P-wave\end{tabular}                                                                                              & Linear regression slope of the variability              & Stepwise discriminant analysis (86.69\%)                                                            \\
ECG-based Prediction of Atrial Fibrillation Development Following CABG                                                          & 14 patients + 36 controls & 48h                           & \begin{tabular}[c]{@{}l@{}}- P-wave durations\\ - PQ interval\\ - Heart rate\\ - PQ segment, and P, Q, R, and S amplitudes\\ - Wavelet energies and entropy\end{tabular}                                    & Cumulative rank with statistically significant features & \begin{tabular}[c]{@{}l@{}}Decision tree {[}applied over the time-course{]}\\ (85.3\%)\end{tabular} \\
Multiparameter Prediction Model for AF after CABG                                                                               & 11 patients + 29 controls & 48h                           & \begin{tabular}[c]{@{}l@{}}- P-wave duration, slopes, amplitude, area and energies\\ - P-wave wavelet entropy\\ - PQ and PR intervals\\ - Heart rate\end{tabular}                                           & ECG features                                            & Decision tree (85\%)                                                                                \\
Prediction of Paroxysmal AF Onset in Postoperative Patients using Neuro-Fuzzy Modelling                                         & 37 patients + 53 controls & 30m                           & \begin{tabular}[c]{@{}l@{}}-Number of premature atrial complexes\\ - HRV: mean, SDRR, rMSSD, total power, LF/HF, entropy\\ - P-wave duration, amplitude, shape, inflection point, energy ratio\end{tabular} & ECG features                                            & \begin{tabular}[c]{@{}l@{}}Neuro-fuzzy\\ (70\%)\end{tabular}                                        \\
Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation                                   & 46 patients               & 2h                            & \begin{tabular}[c]{@{}l@{}}- P-wave durations\\ - P-wave area, arc-length\end{tabular}                                                                                                                      & Central tendency measurement                            & Decision tree (90\%)                                                                                \\
Role of the P-wave high frequency energy and duration as nonivasive cardiovascular predictors of paroxysmal atrial fibrillation & 46 patients + 53 controls & 2h                            & - P-wave frequency energies                                                                                                                                                                                 & Linear regression slope of the variability              & Stepwise discriminant analysis (80\%)                                                               \\ \hline
\end{tabular}

但只有第一列占据了整个页面。

有什么方法可以让表格自动决定列的大小以使其适合?(然后调整字体大小,我猜)。

祝一切顺利,迪奥戈

答案1

您的表格存在的问题比简单地将单元格中的文本分成更多行还要多:

  • 你的表格很大,如果不付出特别的努力,不可能放在一页上
  • 如果允许的话,你或许应该考虑以横向旋转桌子
  • 您的页面布局未知,因此我决定定义自己的页面布局并坚持使用肖像导向表。
  • 与您的表格代码相比,我做了以下更改:

    • 使用较小的字体(\footnotesize
    • 使用\enumitem第四列的列表
    • 使用\thead来自makcell作为列标题(并使一些列变窄)
    • 刻意确定列宽之间的比例
    • 而不是\hline使用包提供的规则booktabs
    • \addlinespa为了在行之间使用更多的垂直空间,从booktabs包装中使用

      \documentclass{article}
      \usepackage[margin=20mm]{geometry}
      \usepackage{ragged2e}
      \usepackage{booktabs, makecell, tabularx}
      \renewcommand\theadfont{\small\bfseries}
      \renewcommand\theadgape{}
      \newcolumntype{L}{>{\RaggedRight}X}
      \usepackage{siunitx}
      \usepackage{enumitem}
      
      \begin{document}
          \begin{table}[htb]
      \footnotesize
      \setlist[itemize]{nosep,
                        leftmargin=*,
                        before=\vspace{-0.6\baselineskip},
                        after=\vspace{-\baselineskip}
      }
      \setlength\tabcolsep{3pt}
      \begin{tabularx}{\linewidth}{@{}
                  >{\hsize=1.6\hsize}L
                  >{\hsize=0.8\hsize}L
                                     c L
                  >{\hsize=0.8\hsize}L
                  >{\hsize=0.8\hsize}L
                   @{}}
          \toprule
      \thead[bl]{Study name}
          &   \thead[lb]{Cohort\\ dimension}
              &   \thead[lb]{Time before\\ AF onset}
                  &   \thead[bl]{ECG\\ features}
                      &   \thead[lb]{Used metric}
                          &   \thead[lb]{Model\\ (accuracy)}            \\
          \midrule
      Study on P-wave feature Time Course as Early Prediction of Paroxysmal AF
          &   24 patients
              &   2h
                  &   \begin{itemize}
                  \item   P-wave durations\
                  \item   PR interval
                  \item   Heart rate
                      \end{itemize}                                                                                                                   &   Linear regression slope of the variability
                          &   Linear discriminant (\SI{90.79}{\%})                \\
          \addlinespace
      Morphological Variability of the P-wave for Premature Envision of Paroxysmal AF Events
          &   46 patients + 53 controls
              &   2h
                  &   \begin{itemize}
                  \item   P-wave area, energy, conduction velocity, dispersion, arc-length
                      \end{itemize}
                      &   Linear regression slope of the variability
                          &   Decision tree (\si{86.33}{\%})                      \\
          \addlinespace
      Gaussian modelling of the P-wave morphology time course applied to anticipate paroxysmal atrial fibrillation
              &   46 patients + 53 controls
                  &   2h
                      &   \begin{itemize}
                  \item   Gaussian fit parameters
                  \item   Error between fitted Gaussian and P-wave
                          \end{itemize}
                          &   Linear regression slope of the variability
                              &   Stepwise discriminant analysis (\SI{86.69}{\%}) \\
          \addlinespace
      ECG-based Prediction of Atrial Fibrillation Development Following CABG
          &    14 patients + 36 controls
              &   48h
                  &   \begin{itemize}
                  \item   P-wave durations
                  \item   PQ interval
                  \item   Heart rate
                  \item   PQ segment, and P, Q, R, and S amplitudes
                  \item   Wavelet energies and entropy
                      \end{itemize}
                      &   Cumulative rank with statistically significant features
                          &   Decision tree [applied over the time-course] (\SI{85.3}{\%}) \\
          \addlinespace
      Multiparameter Prediction Model for AF after CABG
          &   11 patients + 29 controls
              &   48h
                  &   \begin{itemize}
                  \item   P-wave duration, slopes, amplitude, area and energies
                  \item   P-wave wavelet entropy
                  \item   PQ and PR intervals
                  \item   Heart rate
                      \end{itemize}
                      &   ECG features
                          & Decision tree (\SI{85}{\%})                                   \\
          \addlinespace
      Prediction of Paroxysmal AF Onset in Postoperative Patients using Neuro-Fuzzy Modelling
          &   37 patients + 53 controls
              &   30m
                  &   \begin{itemize}
                  \item   Number of premature atrial complexes
                  \item   HRV: mean, SDRR, rMSSD, total power, LF/HF, entropy
                  \item   P-wave duration, amplitude, shape, inflection point, energy ratio
                      \end{itemize}
                      &   ECG features
                          & Neuro-fuzzy (\SI{70}{\%})                                     \\
          \addlinespace
      Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation
          &   46 patients
              &   2h
                  &   \begin{itemize}
                  \item   P-wave durations
                  \item   P-wave area, arc-length
                      \end{itemize}
                      &   Central tendency measurement
                          &   Decision tree (\SI{90}{\%})                                 \\
          \addlinespace
      Role of the P-wave high frequency energy and duration as nonivasive cardiovascular predictors of paroxysmal atrial fibrillation
          &   46 patients + 53 controls
              &   2h
                  &   \begin{itemize}
                      \item   P-wave frequency energies
                          \end{itemize}
                          &   Linear regression slope of the variability
                              &   Stepwise discriminant analysis (\SI{80}{\%})                \\
              \bottomrule
          \end{tabularx}
          \end{table}
      \end{document}
      

在此处输入图片描述

相关内容