我想要生成这个结构:
[[],
[],
[],
[],
[],
[],
[]]
这是我的代码,错误是什么?
\setcounter{MaxMatrixCols}{20}
\begin{equation}
\begin{bmatrix}
\begin{bmatrix}
83.30000 & 113.69999998714775 & 63.800000003539026 & 127.69999995362014 & 68.80000000819564 & 142.6000000210479 & 67.80000007711351 \\ 40.59999994933605 & 94.90000 & 157.09999995306134 & 70.90000004973263 & 109.69999991357327 & 91.10000007785857 & 50.39999994914979 \\ 64.80000005103648 & 203.099999926053 & 171.2000 & 362.19999997410923 & 97.70000004209578 & 291.4999999338761 & 124.39999997150153 \\ 74.20000003185123 & 90.3000000398606 & 47.599999932572246 & 85.59999 & 157.20000001601875 & 55.00000005122274\end{bmatrix} &
\begin{bmatrix}
87.99999998882413 & 70.29999990481883 & 70.90000004973263 & 127.60000000707805 & 41.50000005029142 & 152.29999995790422 & 60.10000000242144\\ 55.19999994430691 & 98.10000006109476 & 122.60000000242144 & 84.09999997820705 & 99.99999997671694 & 101.00000002421439 & 52.00000002514571 \\ 58.8999999454245 & 155.80000006593764 & 126.79999996908009 & 217.2000000718981 & 150.99999543652 & 280.0000000279397 & 117.49999993480742 \\ 79.20000003650784 & 84.60000006016344 & 27.399999904446304 & 78.70000007096678 & 138.09999998193234 & 71.89999998081475\end{bmatrix} &
\begin{bmatrix}
90.80000000540167 & 55.500000016763806 & 85.1000000257045 & 126.99999997857958 & 38.59999997075647 & 369.30000002030283 & 109.39999995753169 \\ 50.3000000026077 & 113.80000005010515 & 129.19999996665865 & 75.10000001639128 & 117.49999993480742 & 93.90000009443611 & 47.29999997653067 \\ 68.59999999869615 & 186.80000002495944 & 134.09999990835786 & 272.2000000067055 & 174.60000002756715 & 355.6999999564141 & 97.79999998863786 \\ 19.699999946169555 & 81.70000009704381 & 56.79999990388751 & 88.50000007078052 & 83.89999996870756 & 81.40000002458692\end{bmatrix} &
\begin{bmatrix}
124.19999996200204 & 40.29999999329448 & 78.10000004246831 & 131.39999995473772 & 77.30000000447035 & 119.10000001080334 & 91.69999998994172 \\ 26.50000003632158 & 99.50000001117587 & 105.49999994691461 & 98.3634 & 104.90000003483146 & 84.19999992474914 & 53.500000038184226 & 67.7000000141561 \\ 163.3000000147149 & 83.60000001266599 & 190.9999999916181 & 155.70000000298023 & 321.0999999428168 & 97.70000004209578 & 77.09999999497086 \\ 78.1999999890104 & 31.500000040978193 & 78.29999993555248 & 126.30000000353903 & 48.90000005252659\end{bmatrix} &
\begin{bmatrix}
98.10000006109476 & 49.20000000856817 & 80.79999999608845 & 106.70000000391155 & 71.0999999428168 & 134.50000004377216 & 74.90000000689179 \\ 47.49999998603016 & 84.20000004116446 & 123.59999993350357 & 86.8999999947846 & 124.40000008791685 & 71.69999997131526 & 46.89999995753169 \\ 64.89999999757856 & 159.10000004805624 & 112.6999999396503 & 225.89999996125698 & 121.29999999888241 & 344.3000001134351 & 97.1999999601394 \\ 88.09999993536621 & 85.70000005420297 & 47.20000002998859 & 82.19999994616956 & 106.49999999441206 & 71.3000000687316\end{bmatrix} &
\begin{bmatrix}
103.89999998733401 & 34.20000011101365 & 85.399999981708 & 116.59999995026737 & 71.3000000687316 & 161.79999988526106 & 55.7000000262633 \\ 33.900000038556755 & 93.40000001247972 & 125.20000000949949 & 87.59999996982515 & 112.19999997410923 & 93.60000002197921 & 41.50000005029142 \\ 65.10000000707805 & 187.99999996554106 & 113.69999998714775 & 245.89999997988343 & 169.49999995995313 & 303.5999999847263 & 91.60000004339963 \\ 64.4000000320375 & 84.89999989978969 & 44.10000005736947 & 74.20000003185123 & 82.39999995566905 & 78.10000004246831\end{bmatrix} &
\begin{bmatrix}
116.99999996926636 & 25.999999954365194 & 74.6999999973923 & 106.70000000391155 & 55.500000016763806 & 241.79999995976686 & 85.1000000257045 \\ 6.200000061653554 & 105.8999999659136 & 413.99999998975545 & 30.949999985750765 & 562.9999999655411 & 30.550000024959445 & 826.8000000389293 \\ 70.29999990481883 & 75.70000004488975 & 79.60000005550683 & 156.99999989010394 & 82.80000009108335 & 140.00000001396984 & 83.59999989625067 \\ 218.2000000298023 & 64.29999996908009 & 232.7999999979511 & 123.4000000404194 & 264.89999995101243 & 167.30000008828938\end{bmatrix}
\end{bmatrix}
\end{equation}
答案1
您可以使用siunitx
的S[<opt>]
列规范来执行舍入。为了简化代码,我定义了一个新的BMATRIX
环境来处理每个用例的具体情况(也是为了保持一致性)。
\documentclass{article}
\usepackage{amsmath,siunitx}
\newenvironment{BMATRIX}
{\left[\hspace{-\arraycolsep}\begin{array}{
*{\value{MaxMatrixCols}}
{S[round-precision = 3, round-mode = places]}
}}
{\end{array}\hspace{-\arraycolsep}\right]}
\begin{document}
\setcounter{MaxMatrixCols}{20}
\begin{equation}
\begin{bmatrix}
\begin{BMATRIX}
83.30000 & 113.69999998714775 & 63.800000003539026 & 127.69999995362014 & 68.80000000819564 & 142.6000000210479 & 67.80000007711351 \\
40.59999994933605 & 94.90000 & 157.09999995306134 & 70.90000004973263 & 109.69999991357327 & 91.10000007785857 & 50.39999994914979 \\
64.80000005103648 & 203.099999926053 & 171.2000 & 362.19999997410923 & 97.70000004209578 & 291.4999999338761 & 124.39999997150153 \\
74.20000003185123 & 90.3000000398606 & 47.599999932572246 & 85.59999 & 157.20000001601875 & 55.00000005122274
\end{BMATRIX} , \\ \\[-.8\normalbaselineskip]
\begin{BMATRIX}
87.99999998882413 & 70.29999990481883 & 70.90000004973263 & 127.60000000707805 & 41.50000005029142 & 152.29999995790422 & 60.10000000242144 \\
55.19999994430691 & 98.10000006109476 & 122.60000000242144 & 84.09999997820705 & 99.99999997671694 & 101.00000002421439 & 52.00000002514571 \\
58.8999999454245 & 155.80000006593764 & 126.79999996908009 & 217.2000000718981 & 150.99999543652 & 280.0000000279397 & 117.49999993480742 \\
79.20000003650784 & 84.60000006016344 & 27.399999904446304 & 78.70000007096678 & 138.09999998193234 & 71.89999998081475
\end{BMATRIX} , \\ \\[-.8\normalbaselineskip]
\begin{BMATRIX}
90.80000000540167 & 55.500000016763806 & 85.1000000257045 & 126.99999997857958 & 38.59999997075647 & 369.30000002030283 & 109.39999995753169 \\
50.3000000026077 & 113.80000005010515 & 129.19999996665865 & 75.10000001639128 & 117.49999993480742 & 93.90000009443611 & 47.29999997653067 \\
68.59999999869615 & 186.80000002495944 & 134.09999990835786 & 272.2000000067055 & 174.60000002756715 & 355.6999999564141 & 97.79999998863786 \\
19.699999946169555 & 81.70000009704381 & 56.79999990388751 & 88.50000007078052 & 83.89999996870756 & 81.40000002458692
\end{BMATRIX} , \\ \\[-.8\normalbaselineskip]
\begin{BMATRIX}
124.19999996200204 & 40.29999999329448 & 78.10000004246831 & 131.39999995473772 & 77.30000000447035 & 119.10000001080334 & 91.69999998994172 \\
26.50000003632158 & 99.50000001117587 & 105.49999994691461 & 98.3634 & 104.90000003483146 & 84.19999992474914 & 53.500000038184226 \\
67.7000000141561 & 163.3000000147149 & 83.60000001266599 & 190.9999999916181 & 155.70000000298023 & 321.0999999428168 & 97.70000004209578 \\
77.09999999497086 & 78.1999999890104 & 31.500000040978193 & 78.29999993555248 & 126.30000000353903 & 48.90000005252659
\end{BMATRIX} , \\ \\[-.8\normalbaselineskip]
\begin{BMATRIX}
98.10000006109476 & 49.20000000856817 & 80.79999999608845 & 106.70000000391155 & 71.0999999428168 & 134.50000004377216 & 74.90000000689179 \\
47.49999998603016 & 84.20000004116446 & 123.59999993350357 & 86.8999999947846 & 124.40000008791685 & 71.69999997131526 & 46.89999995753169 \\
64.89999999757856 & 159.10000004805624 & 112.6999999396503 & 225.89999996125698 & 121.29999999888241 & 344.3000001134351 & 97.1999999601394 \\
88.09999993536621 & 85.70000005420297 & 47.20000002998859 & 82.19999994616956 & 106.49999999441206 & 71.3000000687316
\end{BMATRIX} , \\ \\[-.8\normalbaselineskip]
\begin{BMATRIX}
103.89999998733401 & 34.20000011101365 & 85.399999981708 & 116.59999995026737 & 71.3000000687316 & 161.79999988526106 & 55.7000000262633 \\
33.900000038556755 & 93.40000001247972 & 125.20000000949949 & 87.59999996982515 & 112.19999997410923 & 93.60000002197921 & 41.50000005029142 \\
65.10000000707805 & 187.99999996554106 & 113.69999998714775 & 245.89999997988343 & 169.49999995995313 & 303.5999999847263 & 91.60000004339963 \\
64.4000000320375 & 84.89999989978969 & 44.10000005736947 & 74.20000003185123 & 82.39999995566905 & 78.10000004246831
\end{BMATRIX} , \\ \\[-.8\normalbaselineskip]
\begin{BMATRIX}
116.99999996926636 & 25.999999954365194 & 74.6999999973923 & 106.70000000391155 & 55.500000016763806 & 241.79999995976686 & 85.1000000257045 \\
6.200000061653554 & 105.8999999659136 & 413.99999998975545 & 30.949999985750765 & 562.9999999655411 & 30.550000024959445 & 826.8000000389293 \\
70.29999990481883 & 75.70000004488975 & 79.60000005550683 & 156.99999989010394 & 82.80000009108335 & 140.00000001396984 & 83.59999989625067 \\
218.2000000298023 & 64.29999996908009 & 232.7999999979511 & 123.4000000404194 & 264.89999995101243 & 167.30000008828938
\end{BMATRIX} \phantom{,}
\end{bmatrix}
\end{equation}
\end{document}
您可以将 调整round-precision
为较小的值,然后尝试使用round-mode = figures
。S
类型列还可确保正确对齐。
答案2
一个关键是使用\\[18pt]
而不是es&
之间bmatrix
。此外,我使用&
before 和 after eachbmatrix
来给每行 3 列...在第 1 列我放置了开始括号,在第 3 列我放置了结束括号。所有包含的bmatrix
es 都放在第 2 列。
当然,我也做了\tiny
调整。最好是截断每个单元格的数据。
\documentclass{article}
\usepackage[landscape]{geometry}
\usepackage{amsmath}
\begin{document}
\tiny
\begin{equation}
\begin{matrix}
\left[\rule{0pt}{15pt}\right.\!\!\!\!\!
&\begin{bmatrix}
83.30000 & 113.69999998714775 & 63.800000003539026 & 127.69999995362014 & 68.80000000819564 & 142.6000000210479 & 67.80000007711351 \\ 40.59999994933605 & 94.90000 & 157.09999995306134 & 70.90000004973263 & 109.69999991357327 & 91.10000007785857 & 50.39999994914979 \\ 64.80000005103648 & 203.099999926053 & 171.2000 & 362.19999997410923 & 97.70000004209578 & 291.4999999338761 & 124.39999997150153 \\ 74.20000003185123 & 90.3000000398606 & 47.599999932572246 & 85.59999 & 157.20000001601875 & 55.00000005122274\end{bmatrix},&\\[18pt]
&\begin{bmatrix}
87.99999998882413 & 70.29999990481883 & 70.90000004973263 & 127.60000000707805 & 41.50000005029142 & 152.29999995790422 & 60.10000000242144\\ 55.19999994430691 & 98.10000006109476 & 122.60000000242144 & 84.09999997820705 & 99.99999997671694 & 101.00000002421439 & 52.00000002514571 \\ 58.8999999454245 & 155.80000006593764 & 126.79999996908009 & 217.2000000718981 & 150.99999543652 & 280.0000000279397 & 117.49999993480742 \\ 79.20000003650784 & 84.60000006016344 & 27.399999904446304 & 78.70000007096678 & 138.09999998193234 & 71.89999998081475\end{bmatrix},&\\[18pt]
&\begin{bmatrix}
90.80000000540167 & 55.500000016763806 & 85.1000000257045 & 126.99999997857958 & 38.59999997075647 & 369.30000002030283 & 109.39999995753169 \\ 50.3000000026077 & 113.80000005010515 & 129.19999996665865 & 75.10000001639128 & 117.49999993480742 & 93.90000009443611 & 47.29999997653067 \\ 68.59999999869615 & 186.80000002495944 & 134.09999990835786 & 272.2000000067055 & 174.60000002756715 & 355.6999999564141 & 97.79999998863786 \\ 19.699999946169555 & 81.70000009704381 & 56.79999990388751 & 88.50000007078052 & 83.89999996870756 & 81.40000002458692\end{bmatrix},&\\[18pt]
&\begin{bmatrix}
124.19999996200204 & 40.29999999329448 & 78.10000004246831 & 131.39999995473772 & 77.30000000447035 & 119.10000001080334 & 91.69999998994172 \\ 26.50000003632158 & 99.50000001117587 & 105.49999994691461 & 98.3634 & 104.90000003483146 & 84.19999992474914 & 53.500000038184226 \\ 67.7000000141561 & 163.3000000147149 & 83.60000001266599 & 190.9999999916181 & 155.70000000298023 & 321.0999999428168 & 97.70000004209578 \\ 77.09999999497086 & 78.1999999890104 & 31.500000040978193 & 78.29999993555248 & 126.30000000353903 & 48.90000005252659\end{bmatrix},&\\[18pt]
&\begin{bmatrix}
98.10000006109476 & 49.20000000856817 & 80.79999999608845 & 106.70000000391155 & 71.0999999428168 & 134.50000004377216 & 74.90000000689179 \\ 47.49999998603016 & 84.20000004116446 & 123.59999993350357 & 86.8999999947846 & 124.40000008791685 & 71.69999997131526 & 46.89999995753169 \\ 64.89999999757856 & 159.10000004805624 & 112.6999999396503 & 225.89999996125698 & 121.29999999888241 & 344.3000001134351 & 97.1999999601394 \\ 88.09999993536621 & 85.70000005420297 & 47.20000002998859 & 82.19999994616956 & 106.49999999441206 & 71.3000000687316\end{bmatrix},&\\[18pt]
&\begin{bmatrix}
103.89999998733401 & 34.20000011101365 & 85.399999981708 & 116.59999995026737 & 71.3000000687316 & 161.79999988526106 & 55.7000000262633 \\ 33.900000038556755 & 93.40000001247972 & 125.20000000949949 & 87.59999996982515 & 112.19999997410923 & 93.60000002197921 & 41.50000005029142 \\ 65.10000000707805 & 187.99999996554106 & 113.69999998714775 & 245.89999997988343 & 169.49999995995313 & 303.5999999847263 & 91.60000004339963 \\ 64.4000000320375 & 84.89999989978969 & 44.10000005736947 & 74.20000003185123 & 82.39999995566905 & 78.10000004246831\end{bmatrix},&\\[18pt]
&\begin{bmatrix}
116.99999996926636 & 25.999999954365194 & 74.6999999973923 & 106.70000000391155 & 55.500000016763806 & 241.79999995976686 & 85.1000000257045 \\ 6.200000061653554 & 105.8999999659136 & 413.99999998975545 & 30.949999985750765 & 562.9999999655411 & 30.550000024959445 & 826.8000000389293 \\ 70.29999990481883 & 75.70000004488975 & 79.60000005550683 & 156.99999989010394 & 82.80000009108335 & 140.00000001396984 & 83.59999989625067 \\ 218.2000000298023 & 64.29999996908009 & 232.7999999979511 & 123.4000000404194 & 264.89999995101243 & 167.30000008828938\end{bmatrix}&
\!\!\!\!\!\left.\rule{0pt}{15pt}\right]
\end{matrix}
\end{equation}
\end{document}