如何使用 Tikz 增加以下密集协议的字体?

如何使用 Tikz 增加以下密集协议的字体?

此图是用 Tikz 包制作的,我需要一些建议,让字体更大、更易读。我尝试了许多解决方案,例如 \Large,但仍然无法使字体更清晰。我的顾问告诉我使用附图中的空格。有什么建议可以让字体更清晰、更大吗?

在此处输入图片描述

\documentclass[tikz,border=3.14mm]{standalone}
       \usetikzlibrary{positioning,calc,arrows.meta}

  \begin{document}

    \begin{tikzpicture}[o-o/.style={{Circle[open]}-{Circle[open]}}, every  node/.append style={font=\LARGE}]

\node (A) at (-8.5,+1){};
 \node (B) at (-8.5,-15){};
\draw[-] (A)--(B);


\node (C) at (-7.1,+1){};
\node (D) at (-7.1,-15){};
\draw[-] (C)--(D);

\node (A) at (-7.8,-1.3){};
\node (B) at (-7.8,-15){};
\draw[->,green] (A)--(B);

    \node[xshift=-2.7cm] (a) {\Large\textcolor{red}{$v_1$ generate a temporary key pair list} };



  \draw[->,cyan] ([yshift=.3cm,xshift=4cm]a.east) --+ (4,0) node [black,midway,above=.1cm] {\Large $Mx^{1}_{v_{1}}$};


         \draw[<-,cyan] ([yshift=-.1cm,xshift=4cm]a.east) --+ (4,0) node[text width=4cm,black,midway,below=.1cm] {\Large$\mathcal{T}_{1}= M_{1} || Z_{H_{1}}$  };

  \node[right=10.6 of a,yellow!70!black, yshift=-.7cm,xshift=1.4cm] (b) 
 {\Large\textcolor{black}{$H_1$}};


         \node[right=0.01 of b] {
%\LARGE
\Large
\begin{tabular}{l}
    Generates: $M_1 = \{Mx^{1}_{v_{1}}, (t_1, Mxa_{H_{1})}\}$ \\
    Determines $\mathrm{Sh}_{H_1}(M_1)$
\end{tabular}
        };


          \begin{scope}[yshift=-3cm]


           \node[xshift=-2.2cm] (a) {
%\LARGE
\Large
\begin{tabular}{p{9cm}}
\textcolor{red}{ Run the the algorithm to get ($G_{\mathcal{T}_{1}})$} \\
 $L_{H_{1}}=(\mathcal{T}_{1}||G_{\mathcal{T}_{1}}||Mx^{2}_{v_{1}} ) || \sigma_{Pr^{1}_{v_{1}}}(\mathcal{T}_{1}, G_{\mathcal{T}_{1}}, Mx^{2}_{v_{1}})$
\end{tabular}

   };


            \draw[->,cyan] ([yshift=.3cm,xshift=3cm]a.east) --+ (4,0) node[black,midway,above=.1cm] {\Large $\mathrm{L}_{H_1}$};


       \draw[<-,cyan] ([yshift=-.1cm,xshift=1.5cm]a.east) --+ (7,0) node[text width=7.5cm,black,midway,below=.1cm] {\Large $\mathcal{T}_{2}= M_{2} || Z_{H_{2}}(M_{1})|| Z_{H_{2}}(M_{2} )  $  };


       \node[right=9.4 of a,yellow!70!black, yshift=-.7cm,xshift=1.4cm] (b) {\Large\textcolor{black}{$H_2$}};






   \node[right=0.01 of b] (c) {
    \Large
    \begin{tabular}{l}
     Verifies $\mathrm{L}_{H_1}$ and execution shares\\
     Verifies $G_{\mathcal{T}_{1}}$ \\

     Generates $M_{2}=\{Mx^{2}_{v_{1}} || (t_{1}, Mxa_{H_{1}}) || (t_{2}, Mxa_{H_{2}})\}$   \\
     Determines $Z_{H_{2}}(M_{1})$ \\

     Determines $Z_{H_{2}}(M_{2})$\\
    \end{tabular}
};

  \end{scope}

  \draw[o-o,dashed] (-7,-1.8) -- (30,-1.8);




\draw[o-o,dashed] (-7,-5.6) -- (30,-5.6);


    \begin{scope}[yshift=-7.5cm]

       \node[xshift=-2.2cm] (a) {
%\LARGE
\Large
\begin{tabular}{p{9cm}}
\textcolor{red}{ Run the the algorithm to get ($G_{\mathcal{T}_{2}})$} \\
 $L_{H_{2}}=({\mathcal{T}_{2}||G_{\mathcal{T}_{2}}|| Mx^{3}_{v_{1}} ) || \sigma_{SK^{1}_{v_{1}}}(\mathcal{T}_{2},  G_{\mathcal{T}_{2}}, Mx^{3}_{v_{1}}}) $
 \end{tabular}

 };


      \draw[->,cyan] ([yshift=.3cm,xshift=3cm]a.east) --+ (4,0) node[black,midway,above=.1cm] {\Large $\mathrm{L}_{H_2}$};


      \draw[<-,cyan] ([yshift=-.1cm,xshift=1cm]a.east) --+ (9,0) node[text width=9.5cm,black,midway,below=.1cm] {\Large $\mathcal{T}_{3}= {M}_{1} || \sigma({M_{1}}) || M_{3} ||Z_{H_{3}}(M_{2})  || Z_{H_{3}}(M_{3} )$};


        \node[right=9.4 of a,yellow!70!black, yshift=-.7cm,xshift=1.4cm] (b) {\Large\textcolor{black}{$H_3$}};







    \node[right=0.01 of b] (c) {
    \Large
    \begin{tabular}{l}
     Verifies $\mathrm{L}_{H_2}$ and execution shares \\
     Verifies $G_{\mathcal{T}_{2}}$ \\
     Determines $Z_{H_{3}}(M_{1})$ \\
     Determines $\sigma(M_{1})$ \\
     Generates $M_{3}=\{Mx^{3}_{v_{1}} || (t_{1}, Mxa_{H_{1}}) || (t_{2}, Mxa_{H_{2}} || (t_{3}, Mxa_{H_{3}})\}$ \\
     Determines $Z_{H_{3}}(M_{2})$\\
     Determines $Z_{H_{3}}(M_{3})$\\
    \end{tabular}
};

 \end{scope}





             \draw[o-o,dashed] (-7,-10.7) -- (30,-10.7);


     \begin{scope}[yshift=-12.5cm]


         \node[xshift=-2.2cm] (a) {
%\LARGE
\Large
\begin{tabular}{p{9cm}}
\textcolor{red}{ Run the the algorithm to get ($G_{\mathcal{T}_{3}}$)} \\

  $L_{H_{3}}=({\mathcal{T}_{3}||G_{\mathcal{T}_{3}}|| Mx^{4}_{v_{1}} ) || \sigma_{SK^{3}_{v_{1}}}(\mathcal{T}_{3}, G_{\mathcal{T}_{3}}, Mx^{4}_{v_{1}}}) $
\end{tabular}

 };







       \draw[->,cyan] ([yshift=.3cm,xshift=3cm]a.east) --+ (4,0) node[black,midway,above=.1cm] {\Large $\mathrm{L}_{H_3}$};


     \draw[<-,cyan] ([yshift=-.1cm,xshift=1cm]a.east) --+ (9,0) node[text width=9.5cm,black,midway,below=.1cm] {\Large $\mathcal{T}_{4}= {M}_{2} || \sigma({M_{2}}) || M_{4}||Z_{H_{4}}(M_{3})  || Z_{H_{4}}(M_{4} )$  };






             \node[right=9.4 of a,yellow!70!black, yshift=-.7cm,xshift=1.4cm] (b) {\Large\textcolor{black}{$H_4$}};





       \node[right=0.01 of b] (c) {
    \Large
    \begin{tabular}{l}
     Verifies $\mathrm{L}_{H_3}$ and execution shares \\
 Verifies $G_{\mathcal{T}_{3}}$ \\
 Determines $Z_{H_{4}}(M_{2})$ \\
 Determines $\sigma({M_{{2}}})$ \\
 Generates  $M_{4}=\{Mx^{4}_{v_{1}} || (t_{1}, Mxa_{H_{1}}) || (t_{2}, Mxa_ {H_{2}} ) || (t_{3}, Mxa_{H_{3}} || (t_{4}, Mxa_{H_{4}})\}$ \\
 Determines $Z_{H_{4}}(M_{3})$ \\
 Determines $Z_{H_{4}}(M_{4})$\\
    \end{tabular}
          };

       \end{scope}




   \end{tikzpicture}
  \end{document}

答案1

像这样?

在此处输入图片描述

  • 我会将您的图像写为表格。
  • 最大的字体大小,可以以横向将表格(或图像)写入 A4 页面,margins=15mm如果\large您允许将长方程分成两行。

    \documentclass{article}
    \usepackage[landscape,margin=15mm]{geometry}
    \usepackage{tikz}
     \usetikzlibrary{arrows.meta, positioning}
    
    \usepackage{array, arydshln}
    \newcommand\ppbb{path picture bounding box}
    \usepackage{mathtools}
    \usepackage{enumitem}
    
    \begin{document}
    
    \begingroup
        \large
        \setlist[itemize]{nosep,label=,leftmargin=*,before=\vspace{1ex},after=\vspace{-2ex}}
    \tikzset{base/.style = {text=black, inner xsep=3mm, inner ysep=2mm},
             boxA/.style = {name=A,
                            base,path picture={%
                            \draw[semithick,cyan,-{Straight Barb[length=0pt 3]}]
                            ([yshift=1mm]\ppbb.south west) -- ([yshift=1mm]\ppbb.south east);
                                            }
                            },
             boxB/.style = {base,text=black, inner xsep=2mm,
                            path picture={%
                            \draw[semithick,cyan,-{Straight Barb[length=0pt 3]}]
                            ([yshift=-1mm]\ppbb.north east) -- ([yshift=-1mm]\ppbb.north west);
                                            },
                            below=of A},
           node distance = -1mm
             }
        \centering
        \setlength\tabcolsep{3pt}
    \begin{tabular}{@{} m{64mm} >{\centering}m{80mm} >{$}c<{$} m{94mm} @{}}
    \textcolor{red}{$v_1$ generate a temporary key pair list}
        &   \tikz[baseline]{
            \node [boxA] {$M_{x^1_{v_1}}$};
            \node [boxB] {$\mathcal{T}_1= M_1\| Z_{H_1}(M_{1})$};
                            }
            &   H_1
                &   \begin{itemize}
                    \item   Generates $M_1=\bigl\{M x^1_{v_1},(t_1,Max_{H_1}\bigr\}$
                    \item   Determine $\mathrm{Sh}_{H_1}(M_1)$
                    \end{itemize}\\
        \hdashline
    \textcolor{red}{Execute the algorithm to get $(G_{T_1})$}\newline
    $\begin{multlined}[0.9\linewidth]
    L_{H_1} = (\mathcal{T}_1 \| G_{\mathcal{T}_{1}}\| Mx^2_{v_1})\| \\
                \sigma_{Pr^1_{v_1}}(\mathcal{T}_1, G_{\mathcal{T}_1}, Mx^2_{v_1})
     \end{multlined}$
        &   \tikz[baseline]{
            \node [boxA] {$\mathrm{L}_{H_1}$};
            \node [boxB] {$\mathcal{T}_2= M_2\| Z_{H_2}(M_{1})\| Z_{H_2}(M_2)$};
                            }
            &   H_2
                &   \begin{itemize}
                    \item   Verifies $\mathrm{L}_{H_1}$
                    \item   Verifies $G_{\mathcal{T}_1}$
                    \item   Generates $M_2=\bigl\{Mx^2_{v_1} \| (t_{1}, Max_{H_{1}}) \| (t_{2}, Max_{H_{2}})\bigr\}$
                    \item   Determine $Z_{H_{2}}(M_{1})$
                    \item   Determine $Z_{H_{2}}(M_{2})$
                    \end{itemize}\\
        \hdashline
    \textcolor{red}{Execute the algorithm to get ($G_{\mathcal{T}_{2}})$} \newline
    $\begin{multlined}[0.9\linewidth]
    L_{H_2}=(\mathcal{T}_2\|G_{\mathcal{T}_2}\| Mx^3_{v_1}) \|  \\
            \sigma_{SK^1_{v_1}}(\mathcal{T}_2, G_{\mathcal{T}_2}, Mx^3_{v_1})
     \end{multlined}$
        &   \tikz[baseline]{
            \node [boxA] {$\mathrm{L}_{H_2}$};
            \node [boxB] {$\mathcal{T}_3= M_1\| \sigma(M_1)\| M_3\|
                          Z_{H_3}(M_2)\| Z_{H_3}(M_3)$};
                            }
            &   H_3
                &   \begin{itemize}
                    \item   Verifies $\mathrm{L}_{H_2}$ and execution
                    \item   Verifies $G_{\mathcal{T}_2}$
                    \item   Determine $Z_{H_{3}}(M_1)$
                    \item   Determine $\sigma(M_1)$
                    \item   Generates
                    $\begin{multlined}[t]
                    M_{3}=\bigl\{Mx^{3}_{v_1}\| (t_1, Max_{H_1})\|   \\
                    (t_2, Max_{H_2}\| (t_3, Max_{H_3})\bigr\}
                     \end{multlined}$
                    \item   Determine $Z_{H_3}(M_2)$
                    \item   Determine $Z_{H_3}(M_3)$
                    \end{itemize}\\
        \hdashline
    \textcolor{red}{execute the algorithm to get ($G_{\mathcal{T}_3}$)} \newline
    $\begin{multlined}[0.9\linewidth]
    L_{H_3}=(\mathcal{T}_{3}\|G_{\mathcal{T}_3}\| Mx^4_{v_1})\| \\ \sigma_{SK^3_{v_1}}(\mathcal{T}_3, G_{\mathcal{T}_3}, Mx^4_{v_1})
     \end{multlined}$
        &   \tikz[baseline]{
            \node [boxA] {$\mathrm{L}_{H_3}$};
            \node [boxB] {$\mathcal{T}_4=M_2\| \sigma(M_2)\|
                          M_4\|Z_{H_4}(M_3)\| Z_{H_4}(M_4)$};
                            }
            &   H_4
                &   \begin{itemize}
                    \item   Verifies $\mathrm{L}_{H_3}$ and execution
                    \item   Verifies $G_{\mathcal{T}_{3}}$
                    \item   Determine $Z_{H_{4}}(M_{2})$
                    \item   Determine $\sigma({M_{{2}}})$
                    \item   Generates
                    $\begin{multlined}[t]
                    M_4=\bigl\{Mx^4_{v_1}\|(t_1, Max_{H_1})\| \\
                        (t_2, Max_{H_2})\| (t_3, Max_{H_3})\| (t_4, Max_{H_4})\bigr\}
                     \end{multlined}$
                    \item   Determine $Z_{H_4}(M_3)$
                    \item   Determine $Z_{H_4}(M_4)$
                    \end{itemize}\\
    \hdashline
    \end{tabular}
    \endgroup
    \end{document}
    

相关内容