Matplotlib 错误:没有这样的文件或目录:“latex”:“latex”

Matplotlib 错误:没有这样的文件或目录:“latex”:“latex”

我正在运行从 GitHub 下载的公共代码,但是当它运行到最后并且必须使用 LaTeX 绘制结果时,我遇到了问题。我收到以下错误:

FileNotFoundError:[Errno 2] 没有这样的文件或目录:'latex':'latex'。

我安装了带有 Python 3.6 的 Anaconda。我使用 MacTex-2018 发行版包在 Mac 上安装了 LaTeX。分析代码后,我发现问题主要出在绘制结果时。它使用一个名为的实用程序,plotting该实用程序在代码开头导入。我尝试更改文件plotting.py,并成功运行代码,显示最终的图表。关键是从代码中删除plotting.py用于告诉 matplotlib 在图表中使用 LaTeX 的部分。我现在将发布所有代码,以便您更好地理解我的问题。

以下是主要代码:

"""
@author: Maziar Raissi
"""

import sys
sys.path.insert(0, '../../Utilities/')

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
from scipy.interpolate import griddata
from pyDOE import lhs
from plotting import newfig, savefig
from mpl_toolkits.mplot3d import Axes3D
import time
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1 import make_axes_locatable

np.random.seed(1234)
tf.set_random_seed(1234)

class PhysicsInformedNN:
    # Initialize the class
    def __init__(self, X_u, u, X_f, layers, lb, ub, nu):

        self.lb = lb
        self.ub = ub

        self.x_u = X_u[:,0:1]
        self.t_u = X_u[:,1:2]

        self.x_f = X_f[:,0:1]
        self.t_f = X_f[:,1:2]

        self.u = u

        self.layers = layers
        self.nu = nu

        # Initialize NNs
        self.weights, self.biases = self.initialize_NN(layers)

        # tf placeholders and graph
        self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                                     log_device_placement=True))

        self.x_u_tf = tf.placeholder(tf.float32, shape=[None, self.x_u.shape[1]])
        self.t_u_tf = tf.placeholder(tf.float32, shape=[None, self.t_u.shape[1]])        
        self.u_tf = tf.placeholder(tf.float32, shape=[None, self.u.shape[1]])

        self.x_f_tf = tf.placeholder(tf.float32, shape=[None, self.x_f.shape[1]])
        self.t_f_tf = tf.placeholder(tf.float32, shape=[None, self.t_f.shape[1]])        

        self.u_pred = self.net_u(self.x_u_tf, self.t_u_tf) 
        self.f_pred = self.net_f(self.x_f_tf, self.t_f_tf)         

        self.loss = tf.reduce_mean(tf.square(self.u_tf - self.u_pred)) + \
                    tf.reduce_mean(tf.square(self.f_pred))


        self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss, 
                                                                method = 'L-BFGS-B', 
                                                                options = {'maxiter': 50000,
                                                                           'maxfun': 50000,
                                                                           'maxcor': 50,
                                                                           'maxls': 50,
                                                                           'ftol' : 1.0 * np.finfo(float).eps})

        init = tf.global_variables_initializer()
        self.sess.run(init)


    def initialize_NN(self, layers):        
        weights = []
        biases = []
        num_layers = len(layers) 
        for l in range(0,num_layers-1):
            W = self.xavier_init(size=[layers[l], layers[l+1]])
            b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32)
            weights.append(W)
            biases.append(b)        
        return weights, biases

    def xavier_init(self, size):
        in_dim = size[0]
        out_dim = size[1]        
        xavier_stddev = np.sqrt(2/(in_dim + out_dim))
        return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)

    def neural_net(self, X, weights, biases):
        num_layers = len(weights) + 1

        H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
        for l in range(0,num_layers-2):
            W = weights[l]
            b = biases[l]
            H = tf.tanh(tf.add(tf.matmul(H, W), b))
        W = weights[-1]
        b = biases[-1]
        Y = tf.add(tf.matmul(H, W), b)
        return Y

    def net_u(self, x, t):
        u = self.neural_net(tf.concat([x,t],1), self.weights, self.biases)
        return u

    def net_f(self, x,t):
        u = self.net_u(x,t)
        u_t = tf.gradients(u, t)[0]
        u_x = tf.gradients(u, x)[0]
        u_xx = tf.gradients(u_x, x)[0]
        f = u_t + u*u_x - self.nu*u_xx

        return f

    def callback(self, loss):
        print('Loss:', loss)

    def train(self):

        tf_dict = {self.x_u_tf: self.x_u, self.t_u_tf: self.t_u, self.u_tf: self.u,
                   self.x_f_tf: self.x_f, self.t_f_tf: self.t_f}

        self.optimizer.minimize(self.sess, 
                                feed_dict = tf_dict,         
                                fetches = [self.loss], 
                                loss_callback = self.callback)        


    def predict(self, X_star):

        u_star = self.sess.run(self.u_pred, {self.x_u_tf: X_star[:,0:1], self.t_u_tf: X_star[:,1:2]})  
        f_star = self.sess.run(self.f_pred, {self.x_f_tf: X_star[:,0:1], self.t_f_tf: X_star[:,1:2]})

        return u_star, f_star

if __name__ == "__main__": 

    nu = 0.01/np.pi
    noise = 0.0        

    N_u = 100
    N_f = 10000
    layers = [2, 20, 20, 20, 20, 20, 20, 20, 20, 1]

    data = scipy.io.loadmat('../Data/burgers_shock.mat')

    t = data['t'].flatten()[:,None]
    x = data['x'].flatten()[:,None]
    Exact = np.real(data['usol']).T

    X, T = np.meshgrid(x,t)

    X_star = np.hstack((X.flatten()[:,None], T.flatten()[:,None]))
    u_star = Exact.flatten()[:,None]              

    # Doman bounds
    lb = X_star.min(0)
    ub = X_star.max(0)    

    xx1 = np.hstack((X[0:1,:].T, T[0:1,:].T))
    uu1 = Exact[0:1,:].T
    xx2 = np.hstack((X[:,0:1], T[:,0:1]))
    uu2 = Exact[:,0:1]
    xx3 = np.hstack((X[:,-1:], T[:,-1:]))
    uu3 = Exact[:,-1:]

    X_u_train = np.vstack([xx1, xx2, xx3])
    X_f_train = lb + (ub-lb)*lhs(2, N_f)
    X_f_train = np.vstack((X_f_train, X_u_train))
    u_train = np.vstack([uu1, uu2, uu3])

    idx = np.random.choice(X_u_train.shape[0], N_u, replace=False)
    X_u_train = X_u_train[idx, :]
    u_train = u_train[idx,:]

    model = PhysicsInformedNN(X_u_train, u_train, X_f_train, layers, lb, ub, nu)

    start_time = time.time()                
    model.train()
    elapsed = time.time() - start_time                
    print('Training time: %.4f' % (elapsed))

    u_pred, f_pred = model.predict(X_star)

    error_u = np.linalg.norm(u_star-u_pred,2)/np.linalg.norm(u_star,2)
    print('Error u: %e' % (error_u))                     


    U_pred = griddata(X_star, u_pred.flatten(), (X, T), method='cubic')
    Error = np.abs(Exact - U_pred)


    ######################################################################
    ############################# Plotting ###############################
    ######################################################################    

    fig, ax = newfig(1.0, 1.1)
    ax.axis('off')

    ####### Row 0: u(t,x) ##################    
    gs0 = gridspec.GridSpec(1, 2)
    gs0.update(top=1-0.06, bottom=1-1/3, left=0.15, right=0.85, wspace=0)
    ax = plt.subplot(gs0[:, :])

    h = ax.imshow(U_pred.T, interpolation='nearest', cmap='rainbow', 
                  extent=[t.min(), t.max(), x.min(), x.max()], 
                  origin='lower', aspect='auto')
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    fig.colorbar(h, cax=cax)

    ax.plot(X_u_train[:,1], X_u_train[:,0], 'kx', label = 'Data (%d points)' % (u_train.shape[0]), markersize = 4, clip_on = False)

    line = np.linspace(x.min(), x.max(), 2)[:,None]
    ax.plot(t[25]*np.ones((2,1)), line, 'w-', linewidth = 1)
    ax.plot(t[50]*np.ones((2,1)), line, 'w-', linewidth = 1)
    ax.plot(t[75]*np.ones((2,1)), line, 'w-', linewidth = 1)    

    ax.set_xlabel('$t$')
    ax.set_ylabel('$x$')
    ax.legend(frameon=False, loc = 'best')
    ax.set_title('$u(t,x)$', fontsize = 10)

    ####### Row 1: u(t,x) slices ##################    
    gs1 = gridspec.GridSpec(1, 3)
    gs1.update(top=1-1/3, bottom=0, left=0.1, right=0.9, wspace=0.5)

    ax = plt.subplot(gs1[0, 0])
    ax.plot(x,Exact[25,:], 'b-', linewidth = 2, label = 'Exact')       
    ax.plot(x,U_pred[25,:], 'r--', linewidth = 2, label = 'Prediction')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$u(t,x)$')    
    ax.set_title('$t = 0.25$', fontsize = 10)
    ax.axis('square')
    ax.set_xlim([-1.1,1.1])
    ax.set_ylim([-1.1,1.1])

    ax = plt.subplot(gs1[0, 1])
    ax.plot(x,Exact[50,:], 'b-', linewidth = 2, label = 'Exact')
    ax.plot(x,U_pred[50,:], 'r--', linewidth = 2, label = 'Prediction')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$u(t,x)$')
    ax.axis('square')
    ax.set_xlim([-1.1,1.1])
    ax.set_ylim([-1.1,1.1])
    ax.set_title('$t = 0.50$', fontsize = 10)
    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.35), ncol=5, frameon=False)

    ax = plt.subplot(gs1[0, 2])
    ax.plot(x,Exact[75,:], 'b-', linewidth = 2, label = 'Exact')       
    ax.plot(x,U_pred[75,:], 'r--', linewidth = 2, label = 'Prediction')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$u(t,x)$')
    ax.axis('square')
    ax.set_xlim([-1.1,1.1])
    ax.set_ylim([-1.1,1.1])    
    ax.set_title('$t = 0.75$', fontsize = 10)

    savefig('./figures/Burgers') 

以下是 plotting.py 代码:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct  9 20:11:57 2017

@author: mraissi
"""

import numpy as np
import matplotlib as mpl
#mpl.use('pgf')

def figsize(scale, nplots = 1):
    fig_width_pt = 390.0                            # Get this from LaTeX using \the\textwidth
    inches_per_pt = 1.0/72.27                       # Convert pt to inch
    golden_mean = (np.sqrt(5.0)-1.0)/2.0            # Aesthetic ratio (you could change this)
    fig_width = fig_width_pt*inches_per_pt*scale    # width in inches
    fig_height = nplots*fig_width*golden_mean       # height in inches
    fig_size = [fig_width,fig_height]
    return fig_size

pgf_with_latex = {                      # setup matplotlib to use latex for output
    "pgf.texsystem": "pdflatex",        # change this if using xetex or lautex
    "text.usetex": True,                # use LaTeX to write all text
    "font.family": "serif",
    "font.serif": [],                   # blank entries should cause plots to inherit fonts from the document
    "font.sans-serif": [],
    "font.monospace": [],
    "axes.labelsize": 10,               # LaTeX default is 10pt font.
    "font.size": 10,
    "legend.fontsize": 8,               # Make the legend/label fonts a little smaller
    "xtick.labelsize": 8,
    "ytick.labelsize": 8,
    "figure.figsize": figsize(1.0),     # default fig size of 0.9 textwidth
    "pgf.preamble": [
        r"\usepackage[utf8x]{inputenc}",    # use utf8 fonts becasue your computer can handle it :)
        r"\usepackage[T1]{fontenc}",        # plots will be generated using this preamble
        ]
    }
mpl.rcParams.update(pgf_with_latex)

import matplotlib.pyplot as plt

# I make my own newfig and savefig functions
def newfig(width, nplots = 1):
    fig = plt.figure(figsize=figsize(width, nplots))
    ax = fig.add_subplot(111)
    return fig, ax

def savefig(filename, crop = True):
    if crop == True:
#        plt.savefig('{}.pgf'.format(filename), bbox_inches='tight', pad_inches=0)
        plt.savefig('{}.pdf'.format(filename), bbox_inches='tight', pad_inches=0)
        plt.savefig('{}.eps'.format(filename), bbox_inches='tight', pad_inches=0)
    else:
#        plt.savefig('{}.pgf'.format(filename))
        plt.savefig('{}.pdf'.format(filename))
        plt.savefig('{}.eps'.format(filename))

## Simple plot
#fig, ax  = newfig(1.0)
#
#def ema(y, a):
#    s = []
#    s.append(y[0])
#    for t in range(1, len(y)):
#        s.append(a * y[t] + (1-a) * s[t-1])
#    return np.array(s)
#    
#y = [0]*200
#y.extend([20]*(1000-len(y)))
#s = ema(y, 0.01)
#
#ax.plot(s)
#ax.set_xlabel('X Label')
#ax.set_ylabel('EMA')
#
#savefig('ema')

如果我更改绘图代码并删除以 开头的部分,pgf_with_latex那么一切都会正常工作。

这是我必须删除的代码:

pgf_with_latex = {                      # setup matplotlib to use latex for output
    "pgf.texsystem": "pdflatex",        # change this if using xetex or lautex
    "text.usetex": True,                # use LaTeX to write all text
    "font.family": "serif",
    "font.serif": [],                   # blank entries should cause plots to inherit fonts from the document
    "font.sans-serif": [],
    "font.monospace": [],
    "axes.labelsize": 10,               # LaTeX default is 10pt font.
    "font.size": 10,
    "legend.fontsize": 8,               # Make the legend/label fonts a little smaller
    "xtick.labelsize": 8,
    "ytick.labelsize": 8,
    "figure.figsize": figsize(1.0),     # default fig size of 0.9 textwidth
    "pgf.preamble": [
        r"\usepackage[utf8x]{inputenc}",    # use utf8 fonts becasue your computer can handle it :)
        r"\usepackage[T1]{fontenc}",        # plots will be generated using this preamble
        ]
    }
mpl.rcParams.update(pgf_with_latex)

我想使用我的代码而不删除这部分。我应该怎么做才能让 LaTeX 正常工作?

答案1

首先通过执行以下操作检查系统上的乳胶:

whereis latex

如果输出为空,则安装以下包:

sudo apt install texlive-fonts-recommended texlive-fonts-extra

sudo apt install dvipng

答案2

您可以做两件事。

  1. #mpl.rcParams.更新(pgf_with_latex)

    • savefig() 在保存图形时不会使用 LaTeX 格式。
  2. 安装 LaTeX 并将其添加到 PATH

    • 如果您想使用 LaTeX 格式。

相关内容