我有一组分布不均匀的点。我发现这个帖子这应该能满足我的要求,但当我尝试使用它来解决我的问题时,我得到了一个Dimension too large
错误,而且我最终没有得到一个图。这是我尝试编译的代码。
\documentclass[a4paper,12pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usetikzlibrary{decorations}
\usetikzlibrary{decorations.markings}
\begin{document}
\begin{tikzpicture}
\begin{axis}[]
\addplot [smooth,thick,color=blue,
postaction={
decoration={
markings,
mark=between positions 0 and 1 step 0.1
with { \fill circle[radius=2pt]; },
},
decorate,
},
domain=-3.14:3.14,
samples=10,
] table{
-0.38099999230303 199406.501051229
-0.380884320871537 199365.407259867
-0.380768649440043 199324.317600021
-0.380537306577056 199242.150688477
-0.380074620851082 199077.86659333
-0.379149249399134 198749.498079625
-0.377298506495239 198093.565910485
-0.373597020687447 196784.97075711
-0.36557135114286 193963.09674876
-0.358077529123815 191348.210427579
-0.350730706145463 188804.381427219
-0.342761185238107 186068.270698234
-0.335323511856293 183537.830722232
-0.327263140545475 180822.076760121
-0.31934976827535 178184.168851384
-0.311968243530767 175750.204652269
-0.303964020857181 173141.533094867
-0.296491645709136 170736.434024905
-0.289166269601784 168408.432066772
-0.281218195565428 165917.561710808
-0.273801969054615 163627.863604111
-0.265763044614797 161185.407301121
-0.257871119215673 158829.538764559
-0.25051104134209 156671.662740037
-0.242528265539504 154376.020421481
-0.235077337262459 152277.268211106
-0.227003711056411 150053.164107717
-0.219077083891056 147922.395326773
-0.211682304251242 145983.771307456
-0.203664826682425 143937.689528338
-0.196179196639149 142081.711378427
-0.188840565636567 140314.987471693
-0.180879236704981 138459.498341918
-0.173449755298937 136787.21152484
-0.165397575963889 135041.375410089
-0.157492395669534 133396.778565128
-0.150119062900721 131926.444589982
-0.142123032202904 130403.053389279
-0.134658849030629 129049.248876948
-0.127341664899047 127787.369338335
-0.119401782838461 126492.516446894
-0.111993748303417 125355.360506171
-0.103963015839369 124201.12791175
-0.096464130900863 123197.993670554
-0.08911224500305 122285.265005996
-0.081137661176234 121375.133872323
-0.073694924874959 120601.28425675
-0.06562949064468 119845.603623385
-0.050074177616269 118633.291292811
-0.040445822681127 118045.469726907
-0.030943448397504 117587.650939803
-0.021542452386823 117254.504953564
-0.010121881877775 117010.273159621
0.010252595154182 117012.072031239
0.021025074274485 117239.632516534
0.030656412234619 117575.714892318
0.04262744688219 118167.739755309
0.050027289441464 118630.126944655
0.065540522892478 119837.750531103
0.072884216814521 120521.419511186
0.080850608665568 121343.931617968
0.088285152991073 122186.993660124
0.096342395245582 123182.308181852
0.104252638459397 124241.322769323
0.111631034147671 125301.459643262
0.119632127764949 126528.978819172
0.127101373856685 127747.039268037
0.134423620907727 129007.671170366
0.142368565887774 130448.714376932
0.149781663342279 131860.656845236
0.157817458725787 133463.025077055
0.165321406583754 135025.19802553
0.172678355401027 136616.927819083
0.180658002147305 138408.865640825
0.18810580136804 140141.04501643
0.19617629851778 142081.003239535
0.204099796626826 144047.16908768
0.21149144721033 145934.381197583
0.219505795722838 148036.261536062
0.226988296709805 150048.969014494
0.234323798656078 152067.449337248
0.242281998531355 154305.964170006
0.24970835088109 156438.687879645
0.257757401159829 158795.905613363
0.265659452397875 161154.209839522
0.273029656110379 163391.398508429
0.281022557751887 165856.725190514
0.288483611867853 168193.036471996
0.295797666943126 170514.601027521
0.303734419947403 173067.189871274
0.311139325426138 175478.54467667
0.319166928833877 178123.563510636
0.326662684716074 180620.912986346
0.334011441557577 183093.840647776
0.341982896328085 185802.417150139
0.349422503573051 188353.548229749
0.35748480874702 191142.242370126
0.365400114880297 193903.126125312
0.372783573488031 196497.983875656
0.372911955032016 196543.262962704
0.373040336576 196588.547434927
0.373297099663969 196679.132515381
0.373810625839906 196860.367083898
0.374837678191781 197223.092763236
0.376891782895531 197949.561638057
0.377020164439515 197995.010648961
0.3771485459835 198040.464890766
0.377405309071468 198131.389048049
0.377918835247406 198313.299924334
0.378945887599281 198677.370863128
0.379074269143265 198722.90299963
0.379202650687249 198768.440291362
0.379459413775218 198859.530321734
0.379972939951155 199041.77203882
0.38010132149514 199087.345285855
0.380229703039124 199132.923650649
0.380486466127093 199224.095714845
0.380614847671077 199269.689404925
0.380743229215062 199315.288194116
0.380871610759046 199360.892077767
0.38099999230303 199406.501051229
};
\end{axis}
\end{tikzpicture}
\end{document}
答案1
如果您删除smooth
它,它将按预期工作。
\documentclass[a4paper,12pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usetikzlibrary{decorations}
\usetikzlibrary{decorations.markings}
\begin{document}
\begin{tikzpicture}
\begin{axis}[]
\addplot [thick,color=blue,
postaction={
decoration={
markings,
mark=between positions 0 and 1 step 0.1
with { \fill circle[radius=2pt]; },
},
decorate,
},
%domain=-3.14:3.14,
%samples=10,
] table{
-0.38099999230303 199406.501051229
-0.380884320871537 199365.407259867
-0.380768649440043 199324.317600021
-0.380537306577056 199242.150688477
-0.380074620851082 199077.86659333
-0.379149249399134 198749.498079625
-0.377298506495239 198093.565910485
-0.373597020687447 196784.97075711
-0.36557135114286 193963.09674876
-0.358077529123815 191348.210427579
-0.350730706145463 188804.381427219
-0.342761185238107 186068.270698234
-0.335323511856293 183537.830722232
-0.327263140545475 180822.076760121
-0.31934976827535 178184.168851384
-0.311968243530767 175750.204652269
-0.303964020857181 173141.533094867
-0.296491645709136 170736.434024905
-0.289166269601784 168408.432066772
-0.281218195565428 165917.561710808
-0.273801969054615 163627.863604111
-0.265763044614797 161185.407301121
-0.257871119215673 158829.538764559
-0.25051104134209 156671.662740037
-0.242528265539504 154376.020421481
-0.235077337262459 152277.268211106
-0.227003711056411 150053.164107717
-0.219077083891056 147922.395326773
-0.211682304251242 145983.771307456
-0.203664826682425 143937.689528338
-0.196179196639149 142081.711378427
-0.188840565636567 140314.987471693
-0.180879236704981 138459.498341918
-0.173449755298937 136787.21152484
-0.165397575963889 135041.375410089
-0.157492395669534 133396.778565128
-0.150119062900721 131926.444589982
-0.142123032202904 130403.053389279
-0.134658849030629 129049.248876948
-0.127341664899047 127787.369338335
-0.119401782838461 126492.516446894
-0.111993748303417 125355.360506171
-0.103963015839369 124201.12791175
-0.096464130900863 123197.993670554
-0.08911224500305 122285.265005996
-0.081137661176234 121375.133872323
-0.073694924874959 120601.28425675
-0.06562949064468 119845.603623385
-0.050074177616269 118633.291292811
-0.040445822681127 118045.469726907
-0.030943448397504 117587.650939803
-0.021542452386823 117254.504953564
-0.010121881877775 117010.273159621
0.010252595154182 117012.072031239
0.021025074274485 117239.632516534
0.030656412234619 117575.714892318
0.04262744688219 118167.739755309
0.050027289441464 118630.126944655
0.065540522892478 119837.750531103
0.072884216814521 120521.419511186
0.080850608665568 121343.931617968
0.088285152991073 122186.993660124
0.096342395245582 123182.308181852
0.104252638459397 124241.322769323
0.111631034147671 125301.459643262
0.119632127764949 126528.978819172
0.127101373856685 127747.039268037
0.134423620907727 129007.671170366
0.142368565887774 130448.714376932
0.149781663342279 131860.656845236
0.157817458725787 133463.025077055
0.165321406583754 135025.19802553
0.172678355401027 136616.927819083
0.180658002147305 138408.865640825
0.18810580136804 140141.04501643
0.19617629851778 142081.003239535
0.204099796626826 144047.16908768
0.21149144721033 145934.381197583
0.219505795722838 148036.261536062
0.226988296709805 150048.969014494
0.234323798656078 152067.449337248
0.242281998531355 154305.964170006
0.24970835088109 156438.687879645
0.257757401159829 158795.905613363
0.265659452397875 161154.209839522
0.273029656110379 163391.398508429
0.281022557751887 165856.725190514
0.288483611867853 168193.036471996
0.295797666943126 170514.601027521
0.303734419947403 173067.189871274
0.311139325426138 175478.54467667
0.319166928833877 178123.563510636
0.326662684716074 180620.912986346
0.334011441557577 183093.840647776
0.341982896328085 185802.417150139
0.349422503573051 188353.548229749
0.35748480874702 191142.242370126
0.365400114880297 193903.126125312
0.372783573488031 196497.983875656
0.372911955032016 196543.262962704
0.373040336576 196588.547434927
0.373297099663969 196679.132515381
0.373810625839906 196860.367083898
0.374837678191781 197223.092763236
0.376891782895531 197949.561638057
0.377020164439515 197995.010648961
0.3771485459835 198040.464890766
0.377405309071468 198131.389048049
0.377918835247406 198313.299924334
0.378945887599281 198677.370863128
0.379074269143265 198722.90299963
0.379202650687249 198768.440291362
0.379459413775218 198859.530321734
0.379972939951155 199041.77203882
0.38010132149514 199087.345285855
0.380229703039124 199132.923650649
0.380486466127093 199224.095714845
0.380614847671077 199269.689404925
0.380743229215062 199315.288194116
0.380871610759046 199360.892077767
0.38099999230303 199406.501051229
};
\end{axis}
\end{tikzpicture}
\end{document}
如果你真的想使用平滑(几乎没有明显的区别),你可以这样做
\documentclass[a4paper,12pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usetikzlibrary{decorations}
\usetikzlibrary{decorations.markings}
\begin{document}
\begin{tikzpicture}
\begin{axis}[]
\addplot [smooth,thick,color=blue] table{
-0.38099999230303 199406.501051229
-0.380884320871537 199365.407259867
-0.380768649440043 199324.317600021
-0.380537306577056 199242.150688477
-0.380074620851082 199077.86659333
-0.379149249399134 198749.498079625
-0.377298506495239 198093.565910485
-0.373597020687447 196784.97075711
-0.36557135114286 193963.09674876
-0.358077529123815 191348.210427579
-0.350730706145463 188804.381427219
-0.342761185238107 186068.270698234
-0.335323511856293 183537.830722232
-0.327263140545475 180822.076760121
-0.31934976827535 178184.168851384
-0.311968243530767 175750.204652269
-0.303964020857181 173141.533094867
-0.296491645709136 170736.434024905
-0.289166269601784 168408.432066772
-0.281218195565428 165917.561710808
-0.273801969054615 163627.863604111
-0.265763044614797 161185.407301121
-0.257871119215673 158829.538764559
-0.25051104134209 156671.662740037
-0.242528265539504 154376.020421481
-0.235077337262459 152277.268211106
-0.227003711056411 150053.164107717
-0.219077083891056 147922.395326773
-0.211682304251242 145983.771307456
-0.203664826682425 143937.689528338
-0.196179196639149 142081.711378427
-0.188840565636567 140314.987471693
-0.180879236704981 138459.498341918
-0.173449755298937 136787.21152484
-0.165397575963889 135041.375410089
-0.157492395669534 133396.778565128
-0.150119062900721 131926.444589982
-0.142123032202904 130403.053389279
-0.134658849030629 129049.248876948
-0.127341664899047 127787.369338335
-0.119401782838461 126492.516446894
-0.111993748303417 125355.360506171
-0.103963015839369 124201.12791175
-0.096464130900863 123197.993670554
-0.08911224500305 122285.265005996
-0.081137661176234 121375.133872323
-0.073694924874959 120601.28425675
-0.06562949064468 119845.603623385
-0.050074177616269 118633.291292811
-0.040445822681127 118045.469726907
-0.030943448397504 117587.650939803
-0.021542452386823 117254.504953564
-0.010121881877775 117010.273159621
0.010252595154182 117012.072031239
0.021025074274485 117239.632516534
0.030656412234619 117575.714892318
0.04262744688219 118167.739755309
0.050027289441464 118630.126944655
0.065540522892478 119837.750531103
0.072884216814521 120521.419511186
0.080850608665568 121343.931617968
0.088285152991073 122186.993660124
0.096342395245582 123182.308181852
0.104252638459397 124241.322769323
0.111631034147671 125301.459643262
0.119632127764949 126528.978819172
0.127101373856685 127747.039268037
0.134423620907727 129007.671170366
0.142368565887774 130448.714376932
0.149781663342279 131860.656845236
0.157817458725787 133463.025077055
0.165321406583754 135025.19802553
0.172678355401027 136616.927819083
0.180658002147305 138408.865640825
0.18810580136804 140141.04501643
0.19617629851778 142081.003239535
0.204099796626826 144047.16908768
0.21149144721033 145934.381197583
0.219505795722838 148036.261536062
0.226988296709805 150048.969014494
0.234323798656078 152067.449337248
0.242281998531355 154305.964170006
0.24970835088109 156438.687879645
0.257757401159829 158795.905613363
0.265659452397875 161154.209839522
0.273029656110379 163391.398508429
0.281022557751887 165856.725190514
0.288483611867853 168193.036471996
0.295797666943126 170514.601027521
0.303734419947403 173067.189871274
0.311139325426138 175478.54467667
0.319166928833877 178123.563510636
0.326662684716074 180620.912986346
0.334011441557577 183093.840647776
0.341982896328085 185802.417150139
0.349422503573051 188353.548229749
0.35748480874702 191142.242370126
0.365400114880297 193903.126125312
0.372783573488031 196497.983875656
0.372911955032016 196543.262962704
0.373040336576 196588.547434927
0.373297099663969 196679.132515381
0.373810625839906 196860.367083898
0.374837678191781 197223.092763236
0.376891782895531 197949.561638057
0.377020164439515 197995.010648961
0.3771485459835 198040.464890766
0.377405309071468 198131.389048049
0.377918835247406 198313.299924334
0.378945887599281 198677.370863128
0.379074269143265 198722.90299963
0.379202650687249 198768.440291362
0.379459413775218 198859.530321734
0.379972939951155 199041.77203882
0.38010132149514 199087.345285855
0.380229703039124 199132.923650649
0.380486466127093 199224.095714845
0.380614847671077 199269.689404925
0.380743229215062 199315.288194116
0.380871610759046 199360.892077767
0.38099999230303 199406.501051229
};
\addplot[draw=none,
postaction={
decoration={
markings,
mark=between positions 0 and 1 step 0.1
with { \fill[blue] circle[radius=2pt]; },
},
decorate,
},] table{
-0.38099999230303 199406.501051229
-0.380884320871537 199365.407259867
-0.380768649440043 199324.317600021
-0.380537306577056 199242.150688477
-0.380074620851082 199077.86659333
-0.379149249399134 198749.498079625
-0.377298506495239 198093.565910485
-0.373597020687447 196784.97075711
-0.36557135114286 193963.09674876
-0.358077529123815 191348.210427579
-0.350730706145463 188804.381427219
-0.342761185238107 186068.270698234
-0.335323511856293 183537.830722232
-0.327263140545475 180822.076760121
-0.31934976827535 178184.168851384
-0.311968243530767 175750.204652269
-0.303964020857181 173141.533094867
-0.296491645709136 170736.434024905
-0.289166269601784 168408.432066772
-0.281218195565428 165917.561710808
-0.273801969054615 163627.863604111
-0.265763044614797 161185.407301121
-0.257871119215673 158829.538764559
-0.25051104134209 156671.662740037
-0.242528265539504 154376.020421481
-0.235077337262459 152277.268211106
-0.227003711056411 150053.164107717
-0.219077083891056 147922.395326773
-0.211682304251242 145983.771307456
-0.203664826682425 143937.689528338
-0.196179196639149 142081.711378427
-0.188840565636567 140314.987471693
-0.180879236704981 138459.498341918
-0.173449755298937 136787.21152484
-0.165397575963889 135041.375410089
-0.157492395669534 133396.778565128
-0.150119062900721 131926.444589982
-0.142123032202904 130403.053389279
-0.134658849030629 129049.248876948
-0.127341664899047 127787.369338335
-0.119401782838461 126492.516446894
-0.111993748303417 125355.360506171
-0.103963015839369 124201.12791175
-0.096464130900863 123197.993670554
-0.08911224500305 122285.265005996
-0.081137661176234 121375.133872323
-0.073694924874959 120601.28425675
-0.06562949064468 119845.603623385
-0.050074177616269 118633.291292811
-0.040445822681127 118045.469726907
-0.030943448397504 117587.650939803
-0.021542452386823 117254.504953564
-0.010121881877775 117010.273159621
0.010252595154182 117012.072031239
0.021025074274485 117239.632516534
0.030656412234619 117575.714892318
0.04262744688219 118167.739755309
0.050027289441464 118630.126944655
0.065540522892478 119837.750531103
0.072884216814521 120521.419511186
0.080850608665568 121343.931617968
0.088285152991073 122186.993660124
0.096342395245582 123182.308181852
0.104252638459397 124241.322769323
0.111631034147671 125301.459643262
0.119632127764949 126528.978819172
0.127101373856685 127747.039268037
0.134423620907727 129007.671170366
0.142368565887774 130448.714376932
0.149781663342279 131860.656845236
0.157817458725787 133463.025077055
0.165321406583754 135025.19802553
0.172678355401027 136616.927819083
0.180658002147305 138408.865640825
0.18810580136804 140141.04501643
0.19617629851778 142081.003239535
0.204099796626826 144047.16908768
0.21149144721033 145934.381197583
0.219505795722838 148036.261536062
0.226988296709805 150048.969014494
0.234323798656078 152067.449337248
0.242281998531355 154305.964170006
0.24970835088109 156438.687879645
0.257757401159829 158795.905613363
0.265659452397875 161154.209839522
0.273029656110379 163391.398508429
0.281022557751887 165856.725190514
0.288483611867853 168193.036471996
0.295797666943126 170514.601027521
0.303734419947403 173067.189871274
0.311139325426138 175478.54467667
0.319166928833877 178123.563510636
0.326662684716074 180620.912986346
0.334011441557577 183093.840647776
0.341982896328085 185802.417150139
0.349422503573051 188353.548229749
0.35748480874702 191142.242370126
0.365400114880297 193903.126125312
0.372783573488031 196497.983875656
0.372911955032016 196543.262962704
0.373040336576 196588.547434927
0.373297099663969 196679.132515381
0.373810625839906 196860.367083898
0.374837678191781 197223.092763236
0.376891782895531 197949.561638057
0.377020164439515 197995.010648961
0.3771485459835 198040.464890766
0.377405309071468 198131.389048049
0.377918835247406 198313.299924334
0.378945887599281 198677.370863128
0.379074269143265 198722.90299963
0.379202650687249 198768.440291362
0.379459413775218 198859.530321734
0.379972939951155 199041.77203882
0.38010132149514 199087.345285855
0.380229703039124 199132.923650649
0.380486466127093 199224.095714845
0.380614847671077 199269.689404925
0.380743229215062 199315.288194116
0.380871610759046 199360.892077767
0.38099999230303 199406.501051229
};
\end{axis}
\end{tikzpicture}
\end{document}