答案1
利用从获得的数值近似值Wolframalpha
,
\documentclass{article}
\usepackage{pgfplots}
\begin{document}
%https://www.wolframalpha.com/input/?i=(x%2F8)*Hypergeometric2F1%5B2,3%2F2,+3,+1-x%5E2%5D
%numerical approximation of your function from WolframAlpha
\[\frac{(x^2)^{\frac{1}{2}}}{8}~_{2}F_{1}(2,\frac{3}{2};3;1-x^2), ~ x\in R\approx-\frac{x(-x^2+2x-1)}{(2x*(x^2-1)^2)}
\]
\begin{tikzpicture}[
declare function={ myfun(\x) =-x*(-x^2+2*(x)-1)/(2*((x))*(x^2-1)^2)));
},
]
\begin{axis}[domain=0.01:10]
% I made a strong assumption that the real-values here includes the 0. But that is only during plotting and not while approximating this function.
\addplot {myfun(x)};
\end{axis}
\end{tikzpicture}
\end{document}
你可以策划
免责声明:在我看来,这个问题显然
out-of-scope
属于这个论坛。这将属于https://math.stackexchange.com/questions。并且,在这个网站上,我们只能帮助解决TeX
相关问题。