不同对齐环境的对齐

不同对齐环境的对齐

当我尝试对齐不同的“对齐”环境时,我遇到了问题。这是我的 Latex 代码:

\documentclass[10pt, a4paper]{article}

\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage[T1]{fontenc}
\usepackage[hidelinks]{hyperref}
\usepackage[utf8]{inputenc}

\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amssymb}

\begin{document}
    \section{Example}
    \subsection*{Degree 1}
    \begin{align*}
        C_1' & = C_1 \\
        C_0' & = a_k + C_0
    \end{align*}

    \subsection*{Degree 2}
    \begin{align*}
        C_2' & = C_2 \\
        C_1' & = 2 C_2 a_k + C_1 \\
        C_0' & = C_2   a_k^2 + C_1   a_k + C_0
    \end{align*}

    \subsection*{Degree 3}
    \begin{align*}
        C_3' & = C_3 \\
        C_2' & = 3 C_3 a_k + C_2 \\
        C_1' & = 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
        C_0' & = C_3 a_k^3 + C_2   a_k^2 + C_1   a_k + C_0
    \end{align*}

    \subsection*{Degree 4}
    \begin{align*}
        C_4' & = C_4 \\
        C_3' & = 4 C_4 a_k + C_3 \\
        C_2' & = 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
        C_1' & = 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
        C_0' & = C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
    \end{align*}

    \subsection*{Degree 5}
    \begin{align*}
        C_5' & = C_5 \\
        C_4' & = 5 C_5 a_k + C_4 \\
        C_3' & = 10 C_5 a_k^2 + 4 C_4 a_k + C_3 \\
        C_2' & = 10 C_5 a_k^3 + 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
        C_1' & = 5 C_5 a_k^4 + 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
        C_0' & = C_5 a_k^5 + C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
    \end{align*}
\end{document}

这是输出:

在此处输入图片描述

如您所见,方程式对齐不充分。我想将它们的左侧对齐在同一行,但要将它们保持在页面中间(这样清楚吗?)

答案1

\intertext

在此处输入图片描述

\documentclass[10pt, a4paper]{article}

\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage[T1]{fontenc}
\usepackage[hidelinks]{hyperref}
\usepackage[utf8]{inputenc}

\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amssymb}

\begin{document}
    \section{Example}
    \subsection*{Degree 1}
    \begin{align*}
        C_1' & = C_1 \\
        C_0' & = a_k + C_0
%
    \intertext{\subsection*{Degree 2}}
        C_2' & = C_2 \\
        C_1' & = 2 C_2 a_k + C_1 \\
        C_0' & = C_2   a_k^2 + C_1   a_k + C_0
%
    \intertext{\subsection*{Degree 3}}
        C_3' & = C_3 \\
        C_2' & = 3 C_3 a_k + C_2 \\
        C_1' & = 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
        C_0' & = C_3 a_k^3 + C_2   a_k^2 + C_1   a_k + C_0
%
    \intertext{\subsection*{Degree 4}}
        C_4' & = C_4 \\
        C_3' & = 4 C_4 a_k + C_3 \\
        C_2' & = 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
        C_1' & = 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
        C_0' & = C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
%
    \intertext{\subsection*{Degree 5}}
        C_5' & = C_5 \\
        C_4' & = 5 C_5 a_k + C_4 \\
        C_3' & = 10 C_5 a_k^2 + 4 C_4 a_k + C_3 \\
        C_2' & = 10 C_5 a_k^3 + 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
        C_1' & = 5 C_5 a_k^4 + 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
        C_0' & = C_5 a_k^5 + C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
    \end{align*}
\end{document}

相关内容