使用 [(a)] 进行枚举

使用 [(a)] 进行枚举

我正在尝试 (a)、(b)、(c) 枚举,但是当我将[(a)]next 添加到\begin{enumerate}as时\begin{enumerate}[(a)],它没有进行枚举。

你能帮我解决这个问题吗?

先感谢您。

  \begin{enumerate}
    \item Suppose $m$ = 6 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to 
        earth, i.e., to $y$ = 0?
        \item Suppose $m$ = 12 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to 
        earth?
        \item When $k$ = 0, i.e., there is no air resistance, the equation governing the motion yield $$
        \bar{v} = -gt + v_0, \bar{y} = -\frac{ g t^2 }{ 2 } + v_0 t
        $$
        where the $\bar{v}$ and $\bar{y}$ are the values of the velocity and position when $k$ = 0. 
        Let $v_0$ = 25 m/sec. and $m$ = 6 kg. Now let successively $k$ = 1, 0.1, 0.001, 0.0001 and calculate 
        the return times and compare them with the return time 
        for $k$ = 0. The numerical evidence should suggest that as $k\rightarrow 0$, the return times converge to the value for $k$ = 0. 
\end{enumerate}

答案1

要管理列表,我建议您添加\usepackage{enumitem}。此时尝试使用以下选项:

\begin{enumerate}[label=(\alph*)]
    \item Suppose $m$ = 6 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to 
        earth, i.e., to $y$ = 0?
        \item Suppose $m$ = 12 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to 
        earth?
        \item When $k$ = 0, i.e., there is no air resistance, the equation governing the motion yield $$
        \bar{v} = -gt + v_0, \bar{y} = -\frac{ g t^2 }{ 2 } + v_0 t
        $$
        where the $\bar{v}$ and $\bar{y}$ are the values of the velocity and position when $k$ = 0. 
        Let $v_0$ = 25 m/sec. and $m$ = 6 kg. Now let successively $k$ = 1, 0.1, 0.001, 0.0001 and calculate 
        the return times and compare them with the return time 
        for $k$ = 0. The numerical evidence should suggest that as $k\rightarrow 0$, the return times converge to the value for $k$ = 0. 
\end{enumerate}

编辑 :

$正如@Mico 所建议的,您应该用too将数值括起来,然后将 切换$$\[...\]or \begin{equation*}...\end{equation*}(参见相关主题这里)。我还在;你的运动方程周围添加了空格。

\begin{enumerate}[label=(\alph*)]
        \item Suppose $m = 6$\,kg, $k = 3 $\,kg/sec. How high will the projectile go ? When will it return to earth, i.e., to $y = 0$ ?
        \item Suppose $m= 12$\,kg, $k = 3$\,kg/sec. How high will the projectile go ? When will it return to earth ?
        \item When $k = 0$, i.e., there is no air resistance, the equation governing the motion yield 
        \[
            \bar{v} = -gt + v_0\quad ;\quad \bar{y} = -\frac{ g t^2 }{ 2 } + v_0 t
        \]

        where the $\bar{v}$ and $\bar{y}$ are the values of the velocity and position when $k = 0$. 
        Let $v_0 = 25$\,m/sec. and $m = 6$\,kg. Now let successively $k = 1, 0.1, 0.001, 0.0001$ and calculate  the return times and compare them with the return time for $k = 0$. The numerical evidence should suggest that as $k\rightarrow 0$, the return times converge to the value for $k = 0$. 
    \end{enumerate}

相关内容