我正在尝试 (a)、(b)、(c) 枚举,但是当我将[(a)]
next 添加到\begin{enumerate}
as时\begin{enumerate}[(a)]
,它没有进行枚举。
你能帮我解决这个问题吗?
先感谢您。
\begin{enumerate}
\item Suppose $m$ = 6 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to
earth, i.e., to $y$ = 0?
\item Suppose $m$ = 12 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to
earth?
\item When $k$ = 0, i.e., there is no air resistance, the equation governing the motion yield $$
\bar{v} = -gt + v_0, \bar{y} = -\frac{ g t^2 }{ 2 } + v_0 t
$$
where the $\bar{v}$ and $\bar{y}$ are the values of the velocity and position when $k$ = 0.
Let $v_0$ = 25 m/sec. and $m$ = 6 kg. Now let successively $k$ = 1, 0.1, 0.001, 0.0001 and calculate
the return times and compare them with the return time
for $k$ = 0. The numerical evidence should suggest that as $k\rightarrow 0$, the return times converge to the value for $k$ = 0.
\end{enumerate}
答案1
要管理列表,我建议您添加\usepackage{enumitem}
。此时尝试使用以下选项:
\begin{enumerate}[label=(\alph*)]
\item Suppose $m$ = 6 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to
earth, i.e., to $y$ = 0?
\item Suppose $m$ = 12 kg, $k$ = 3 kg/sec. How high will the projectile go? When will it return to
earth?
\item When $k$ = 0, i.e., there is no air resistance, the equation governing the motion yield $$
\bar{v} = -gt + v_0, \bar{y} = -\frac{ g t^2 }{ 2 } + v_0 t
$$
where the $\bar{v}$ and $\bar{y}$ are the values of the velocity and position when $k$ = 0.
Let $v_0$ = 25 m/sec. and $m$ = 6 kg. Now let successively $k$ = 1, 0.1, 0.001, 0.0001 and calculate
the return times and compare them with the return time
for $k$ = 0. The numerical evidence should suggest that as $k\rightarrow 0$, the return times converge to the value for $k$ = 0.
\end{enumerate}
编辑 :
$
正如@Mico 所建议的,您应该用too将数值括起来,然后将 切换$$
为\[...\]
or \begin{equation*}...\end{equation*}
(参见相关主题这里)。我还在;
你的运动方程周围添加了空格。
\begin{enumerate}[label=(\alph*)]
\item Suppose $m = 6$\,kg, $k = 3 $\,kg/sec. How high will the projectile go ? When will it return to earth, i.e., to $y = 0$ ?
\item Suppose $m= 12$\,kg, $k = 3$\,kg/sec. How high will the projectile go ? When will it return to earth ?
\item When $k = 0$, i.e., there is no air resistance, the equation governing the motion yield
\[
\bar{v} = -gt + v_0\quad ;\quad \bar{y} = -\frac{ g t^2 }{ 2 } + v_0 t
\]
where the $\bar{v}$ and $\bar{y}$ are the values of the velocity and position when $k = 0$.
Let $v_0 = 25$\,m/sec. and $m = 6$\,kg. Now let successively $k = 1, 0.1, 0.001, 0.0001$ and calculate the return times and compare them with the return time for $k = 0$. The numerical evidence should suggest that as $k\rightarrow 0$, the return times converge to the value for $k = 0$.
\end{enumerate}