我正在使用 oubraces 包来获取方程式中重叠的上括号/下括号。我的方程式如下 MWE:
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{oubraces}
\begin{document}
\begin{equation}
\overunderbraces{&&\br{1}{\text{Diagonal in $k$-space}}&&\br{3}{\text{Diagonal in $x$-space}}}{i\hbar\frac{d\psi_n(x)}{dt}&=&-\frac{\hbar^2}{2m}\frac{\partial^2\psi_n(x)}{\partial x^2}&+&\frac{1}{2}m\omega^2x^2\psi_n(x)&+&f(x,t)\psi_n(x)}{&&\br{3}{\text{Diagonal in Hermite-Gauss basis}}&&\br{1}{\text{Diagonal in $x$-space}}}
\end{equation}
\end{document}
结果是:
分数被压缩到比通常显示的数学字体大小还小。如何恢复全尺寸字体?
答案1
只需使用\dfrac
即可\frac
如果您愿意,可以添加一些\rule
s 来增加垂直间距。
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{oubraces}
\begin{document}
Without \verb|\rule|:
\begin{equation}
\overunderbraces{&&\br{1}{\text{Diagonal in $k$-space}}&&\br{3}{\text{Diagonal in $x$-space}}}{i\hbar\dfrac{d\psi_n(x)}{dt}&=&-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi_n(x)}{\partial x^2}&+&\dfrac{1}{2}m\omega^2x^2\psi_n(x)&+&f(x,t)\psi_n(x)}{&&\br{3}{\text{Diagonal in Hermite-Gauss basis}}&&\br{1}{\text{Diagonal in $x$-space}}}
\end{equation}
With \verb|\rule|:
\begin{equation}
\overunderbraces{&&\br{1}{\text{Diagonal in $k$-space}}&&\br{3}{\text{Diagonal in $x$-space}}}{i\hbar\dfrac{d\psi_n(x)}{dt}&=&\rule[-10pt]{0pt}{30pt}-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi_n(x)}{\partial x^2}&+&\dfrac{1}{2}m\omega^2x^2\psi_n(x)&+&f(x,t)\psi_n(x)}{&&\br{3}{\text{\rule{0pt}{7pt}Diagonal in Hermite-Gauss basis}}&&\br{1}{\text{Diagonal in $x$-space}}}
\end{equation}
\end{document}
答案2
您可以在显示环境中(,等等)修补\overunderbraces
要使用的主要公式,并检查 是否提供了该公式。\displaystyle
equation
align
\if@display
amsmath
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{oubraces}
\usepackage{etoolbox}
\makeatletter
\patchcmd{\overunderbraces}
{&\hfil$}
{&\hfil$\if@display\displaystyle\fi}
{}{}
\patchcmd{\overunderbraces}
{&\hfil${}}
{&\hfil$\if@display\displaystyle\fi{}}
{}{}
\makeatother
\begin{document}
\begin{equation}
\overunderbraces{%
&&\br{1}{\text{Diagonal in $k$-space}}%
&&\br{3}{\text{Diagonal in $x$-space}}%
}{%
i\hbar\frac{d\psi_n(x)}{dt}%
&=%
&-\frac{\hbar^2}{2m}\frac{\partial^2\psi_n(x)}{\partial x^2}%
&+%
&\frac{1}{2}m\omega^2x^2\psi_n(x)
&+
&f(x,t)\psi_n(x)%
}{%
&&\br{3}{\text{Diagonal in Hermite-Gauss basis}}%
&&\br{1}{\text{Diagonal in $x$-space}}%
}
\end{equation}
\end{document}
请注意,我{-}
在之后使用了&
为了修复间距。