字体规范 {cannot-use-pdftex}

字体规范 {cannot-use-pdftex}
\documentclass[aspectratio=169]{beamer}
%\documentclass[t]{beamer}
\usepackage{polyglossia}
\usepackage{lipsum}
\usepackage{fontspec}
\usepackage{xunicode}
\usepackage[latin1]{inputenc}
 \usepackage[francais]{babel}
sepackage{xltxtra}
\setmainfont{carlito}
\usepackage{setspace}
\usepackage{tikz}
\date{}
\definecolor{noir}{rgb}{.09,.09,.09}
\definecolor{blanc}{rgb}{.91,.91,.91}
\definecolor{rouge}{rgb}{.91,.09,.09}
\definecolor{vert}{HTML}{9ECE63}
\definecolor{bleu}{rgb}{.09,.09,.91}
\setbeamercolor{normal text}{fg=blanc}
\setbeamercolor{structure}{fg=-bleu}
\setbeamercolor{local structure}{fg=bleu}
\setbeamercolor{block title}{fg=blanc,bg=vert!55!noir}
\setbeamercolor{block body}{bg=noir!90!blanc}
\setbeamercolor{block title alerted}{bg=rouge!55!noir,fg=blanc}
\setbeamercolor{block body alerted}{bg=noir!90!blanc}
\setbeamercolor{block title example}{bg=-rouge!45!blanc,fg=blanc}
\setbeamercolor{block body example}{bg=noir!90!blanc}
\setbeamercolor{item}{fg=vert}
\setbeamercolor{frametitle}{fg=vert,bg=}
\setbeamercolor{framesubtitle}{fg=white,bg=}
\setbeamercolor{subtitle}{fg=white,bg=}
\setbeamercolor{title}{fg=vert,bg=}
\setbeamercolor{palette primary}{bg=,fg=blanc}
\setbeamercolor{palette secondary}{bg=,fg=bleu!50!blanc}
\setbeamercolor{palette tertiary}{bg=,fg=-vert}
\setbeamercolor{palette quaternary}{use=item,bg=,fg=item.fg}
\setbeamercolor{palette sidebar primary}{use=titlelike, bg=titlelike.bg, fg=titlelike.fg}
\setbeamercolor{section in sidebar}{use=titlelike, fg=titlelike.fg, bg=titlelike.bg}
\setbeamercolor{logo}{use=block title, bg=block title.bg}
\setbeamercolor{separation line}{fg=blanc,bg=blanc}
\setbeamerfont{frametitle}{size=\bf\fontsize{18}{4}\selectfont}
\setbeamerfont{framesubtitle}{size=\bf\fontsize{11}{2}\selectfont}
\setbeamerfont{title}{size=\bf\fontsize{26}{16}\selectfont}
\setbeamerfont{subtitle}{size=\fontsize{26}{12}\selectfont}
\setbeamerfont{normal text}{size=\fontsize{21}{8}\selectfont}
\setbeamertemplate{title}{
    \vspace{0.3cm}
\begin{center}
        \insettitle
\end{center}
}
\setbeamertemplate{frametitle}{
    \vspace*{1.5cm}\hspace*{0.2cm}\insertframetitle \vspace*{0.1cm}}
\setbeamersize{text margin left=2.25cm,text margin right=2cm}
\definecolor{MyBackground}{rgb}{0.21176    0.21176    0.21176}
\setbeamercolor{background canvas}{bg=MyBackground}
\setbeamertemplate{itemize item}[triangle]
\setbeamertemplate{navigation symbols}{}
\newtheorem{thm}{Theoreme}
\newtheorem{df}{Definition}
\newtheorem{rqs}{Remarques}
\newtheorem{rem}{Remarque}
\newtheorem{exmp}{Exemple}
\newtheorem{exemple}{Exemples}
\newtheorem{prop}{Proposition}
\newtheorem{proposition}{Proposition}
\newtheorem{cor}{Corollaire}
\newtheorem{corollaire}{Corollaire}
\newtheorem{lem}{Lemme}
\newcommand{\R}{\mathbb R}
\newcommand{\K}{\mathbb K}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\P}{\mathbb P}
\newcommand{\Sum}{\displaystyle \sum}
\newcommand{\Int}{\displaystyle \int}
\newcommand{\sgn}{\text{sgn}}
\def\r{\right}
\def\lf{\left}
\def\hs{\hspace{0.5cm}}
\def\dint{\displaystyle\int}
\def\dlim{\displaystyle\lim}
\def\dsup{\displaystyle\sup}
\def\dmin{\displaystyle\min}
\def\dmax{\displaystyle\max}
\def\dinf{\displaystyle\inf}
\def\Proof{\noindent{\bf Proof}\quad}
\def\ds{\displaystyle}
\def \ud{\text{d} }
\newcommand{\cadre}[1]{\begin{center}\shadowbox{$#1$}\end{center}}
\newcommand{\tran}[1]{{\vphantom{#1}}^{\mathit t}{#1}}
\newcommand{\transpose}[1]{{\vphantom{#1}}^{\mathit t}{#1}}
\newcommand{\trans}[1]{{\vphantom{#1}}^{\mathit t}{#1}}
\newcommand{\transp}[1]{{\vphantom{#1}}^{\mathit t}{#1}}
\newcommand{\pmatrice}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\newcommand{\amatrice}[1]{\left[\begin{matrix} #1 \end{matrix}\right]}
\newcommand{\matrice}[1]{\begin{matrix} #1 \end{matrix}}
\newcommand{\system}[1]{\left\{\begin{matrix} #1 \end{matrix}\right.}
\newcommand{\GL}[2]{\rm{GL}_{#1}\left( \mathbb #2\right)}
\newcommand{\SL}[2]{\rm{SL}_{#1}\left( \mathbb #2\right)}
\newcommand{\Mc}[2]{\mathcal M_{#1}\left( \mathbb #2\right)}
\newcommand{\Mnp}[3]{\mathcal M_{#1,#2}\left( \mathbb #3\right)}
\newcommand{\Mn}[2]{\mathcal M_{#1}\left( \mathbb #2\right)}
\def \MnC {\mathcal M_n (\mathbb C)}
\def \MnR {\mathcal M_n (\mathbb R)}
\def \MnK {\mathcal M_n (\mathbb K)}
\def \com {\rm {com }}
\newcommand{\colmat}[2]{#2_{#1}}
\newcommand{\Mat}[2] {\ensuremath{\underset{#1}{\rm Mat}}\left(#2\right)}
\newcommand{\matc}[3]{#2=\left( #3_{ij}\right)_{1\leqslant i,j\leqslant #1}}
\newcommand{\matnp}[3]{\left( #3_{ij}\right)_{1\leqslant i\leqslant #1\atop 1\leqslant j\leqslant #2}}
\newcommand{\seveng}[1]{{\rm Vect}\left(#1\right)}
\newcommand{\linnpk}[3]{\mathcal L\left({#3}^{#1},{#3}^{#2}\right)}
\newcommand{\lin}[2]{\mathcal L\left({#1},{#2}\right)}
\def \im {\mbox{Im}}
\numberwithin{equation}{section} \allowdisplaybreaks
\DeclareMathOperator{\divg }{div}

% Alphabet grec
\renewcommand{\a}{\alpha}\renewcommand{\b}{\beta}\newcommand{\g}{\gamma}\newcommand{\G}{\Gamma}\renewcommand{\d}{\delta}\newcommand{\D}{\Delta}\newcommand{\e}{\varepsilon}\newcommand{\eps}{\epsilon}\newcommand{\z}{\zeta} \newcommand{\y}{\eta}\renewcommand{\th}{\theta}\newcommand{\Th}{\Theta}\renewcommand{\i}{\iota}\renewcommand{\k}{\kappa}\newcommand{\vk}{\varkappa}\renewcommand{\l}{\lambda}\renewcommand{\L}{\Lambda}\newcommand{\m}{\mu}\newcommand{\n}{\nu}\newcommand{\x}{\xi}\newcommand{\X}{\Xi}\newcommand{\s}{\sigma}\renewcommand{\SS}{\Sigma}\renewcommand{\t}{\tau}\newcommand{\f}{\varphi}\newcommand{\vf}{\phi}\newcommand{\h}{\chi}\newcommand{\p}{\psi}\renewcommand{\P}{\Psi}\renewcommand{\o}{\omega}\renewcommand{\O}{\Omega}

%\setlength{\parindent}{0.0cm}

\usepackage{verbatim}
%%%>
\usepackage{pgfplots}
\pgfplotsset{width=8cm,compat=2}



\begin{document}

\title[Séries entières]
\subtitle{Premiers exemples}
\author[ MSAAD]{}
\institute[Institut]{}
\date[11/2019]{}
\maketitle



\begin{frame}


\begin{frame}

\frametitle{Séries entières}
\begin{itemize}
\item \textbf {\textcolor {vert}{Définition : }}
On appelle série entière, toute série de fonctions de la forme $\displaystyle\sum a_nz^n$ où $(a_n)_n\in\mathbb{C}^{\mathbb{N}}$

\end{frame}

\begin{frame}
\frametitle{Lemme d'Abel}

\textbf {\textcolor {vert}{Proposition : }}
Soit $\sum a_nz^n$ une série entière et $z_0\mathbb{C}$ tel que la suite $(a_n)_n$ soit bornée, alors la série $\sum a_nz^n$ converge pour tout nombre complexe $z$ tel que
$\vert z\vert \< \vert z_0\vert$
\end{frame}

 \begin{frame}
\frametitle{Lemme d'Abel }
\textbf {\textcolor {vert}{Proposition : }}
Soit $\sum a_nz^n$ une série entière et $z_0\mathbb{C}$ tel que la suite $(a_n)_n$ soit bornée, alors la série $\sum a_nz^n$ converge pour tout nombre complexe $z$ tel que
$\vert z\vert \< \vert z_0\vert$
\end{frame}
\end{document} 

相关内容