嵌套枚举重叠

嵌套枚举重叠

我正在尝试创建一个“组合”嵌套枚举,如下面的代码所示:

\documentclass[12pt]{article}
\usepackage{amssymb, graphicx}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{float}
\usepackage{enumitem}
\usepackage{amsfonts,bm}
\usepackage{diagbox}
\usepackage[makeroom]{cancel}
\usepackage{pgfplots}
\usepackage{tikz}
\usetikzlibrary{shapes,arrows}
\usepackage{verbatim}
\usepackage[american,siunitx]{circuitikz}
\usepackage[export]{adjustbox}
\usepackage{mathtools}
\DeclarePairedDelimiter\ceil{\lceil}{\rceil}
\DeclarePairedDelimiter\floor{\lfloor}{\rfloor}
\DeclarePairedDelimiter\norm{\lvert}{\rvert}
\usepackage{units}
\usepackage{relsize}
\usepackage[margin=1in]{geometry} 
\let\DeclareUSUnit\DeclareSIUnit
\let\US\SI
\DeclareUSUnit\mile{mi}
\usepackage{optidef}

\setlength{\labelsep}{1em}

\begin{document}
    \title{\vspace{-2cm} HW}
    \author{John Doe}
    \date{\today}
    \maketitle
    \begin{enumerate}[leftmargin =*]
        \item
        \begin{enumerate}
            \item[(a)-(b)] See MATLAB
            \item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are 
            \begin{align*}
                s_1 &= \left\{-0.8098\pm 0.4951j,-2.8409,-3.8327\right\}\\
                s_2 &= \left\{-0.4057\pm 0.3501j,-3.1385,-3.4421\right\}\\
                s_3 &= \left\{-1.0795,-2.1289\pm0.7193j,-5.691\right\}
            \end{align*}
        \end{enumerate}
    \end{enumerate}
\end{document}

然而,我得到了这个: 在此处输入图片描述

有没有办法移动内部枚举以使其不与外部枚举重叠?

答案1

新答案

像这样 ? 截屏

\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{enumitem}


\setlength{\labelsep}{1em}

\begin{document}
    \title{\vspace{-2cm} HW}
    \author{John Doe}
    \date{\today}
    \maketitle
    \begin{enumerate}[align=left]
        \item
        \begin{enumerate}[align=right]
            \item[(a)-(b)] See MATLAB
            \item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are 
            \begin{align*}
                s_1 &= \left\{-0.8098\pm 0.4951j,-2.8409,-3.8327\right\}\\
                s_2 &= \left\{-0.4057\pm 0.3501j,-3.1385,-3.4421\right\}\\
                s_3 &= \left\{-1.0795,-2.1289\pm0.7193j,-5.691\right\}
            \end{align*}
        \end{enumerate}
    \end{enumerate}
\end{document}

旧答案

截屏

我已经删除了这个问题中不必要的包。

\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{enumitem}


\setlength{\labelsep}{1em}

\begin{document}
    \title{\vspace{-2cm} HW}
    \author{John Doe}
    \date{\today}
    \maketitle
    \begin{enumerate}[align=left,leftmargin =*]
        \item
        \begin{enumerate}[align=left]
            \item[(a)-(b)] See MATLAB
            \item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are 
            \begin{align*}
                s_1 &= \left\{-0.8098\pm 0.4951j,-2.8409,-3.8327\right\}\\
                s_2 &= \left\{-0.4057\pm 0.3501j,-3.1385,-3.4421\right\}\\
                s_3 &= \left\{-1.0795,-2.1289\pm0.7193j,-5.691\right\}
            \end{align*}
        \end{enumerate}
    \end{enumerate}
\end{document}

答案2

AndréC 的答案有一点变化:

\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{enumitem}

\begin{document}
\begin{enumerate}
    \item
    \begin{enumerate}[align=right,leftmargin=4.4em]
        \item[(a) -- (b)] See MATLAB
        \item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are
        \begin{align*}
            s_1 & = \{-0.8098\pm 0.4951j,-2.8409,-3.8327\}\\
            s_2 & = \{-0.4057\pm 0.3501j,-3.1385,-3.4421\}\\
            s_3 & = \{-1.0795,-2.1289\pm 0.7193j,-5.691\}
        \end{align*}
    \end{enumerate}
\end{enumerate}
\end{document}

在此处输入图片描述

相关内容