我正在尝试创建一个“组合”嵌套枚举,如下面的代码所示:
\documentclass[12pt]{article}
\usepackage{amssymb, graphicx}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{float}
\usepackage{enumitem}
\usepackage{amsfonts,bm}
\usepackage{diagbox}
\usepackage[makeroom]{cancel}
\usepackage{pgfplots}
\usepackage{tikz}
\usetikzlibrary{shapes,arrows}
\usepackage{verbatim}
\usepackage[american,siunitx]{circuitikz}
\usepackage[export]{adjustbox}
\usepackage{mathtools}
\DeclarePairedDelimiter\ceil{\lceil}{\rceil}
\DeclarePairedDelimiter\floor{\lfloor}{\rfloor}
\DeclarePairedDelimiter\norm{\lvert}{\rvert}
\usepackage{units}
\usepackage{relsize}
\usepackage[margin=1in]{geometry}
\let\DeclareUSUnit\DeclareSIUnit
\let\US\SI
\DeclareUSUnit\mile{mi}
\usepackage{optidef}
\setlength{\labelsep}{1em}
\begin{document}
\title{\vspace{-2cm} HW}
\author{John Doe}
\date{\today}
\maketitle
\begin{enumerate}[leftmargin =*]
\item
\begin{enumerate}
\item[(a)-(b)] See MATLAB
\item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are
\begin{align*}
s_1 &= \left\{-0.8098\pm 0.4951j,-2.8409,-3.8327\right\}\\
s_2 &= \left\{-0.4057\pm 0.3501j,-3.1385,-3.4421\right\}\\
s_3 &= \left\{-1.0795,-2.1289\pm0.7193j,-5.691\right\}
\end{align*}
\end{enumerate}
\end{enumerate}
\end{document}
有没有办法移动内部枚举以使其不与外部枚举重叠?
答案1
新答案
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{enumitem}
\setlength{\labelsep}{1em}
\begin{document}
\title{\vspace{-2cm} HW}
\author{John Doe}
\date{\today}
\maketitle
\begin{enumerate}[align=left]
\item
\begin{enumerate}[align=right]
\item[(a)-(b)] See MATLAB
\item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are
\begin{align*}
s_1 &= \left\{-0.8098\pm 0.4951j,-2.8409,-3.8327\right\}\\
s_2 &= \left\{-0.4057\pm 0.3501j,-3.1385,-3.4421\right\}\\
s_3 &= \left\{-1.0795,-2.1289\pm0.7193j,-5.691\right\}
\end{align*}
\end{enumerate}
\end{enumerate}
\end{document}
旧答案
我已经删除了这个问题中不必要的包。
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{enumitem}
\setlength{\labelsep}{1em}
\begin{document}
\title{\vspace{-2cm} HW}
\author{John Doe}
\date{\today}
\maketitle
\begin{enumerate}[align=left,leftmargin =*]
\item
\begin{enumerate}[align=left]
\item[(a)-(b)] See MATLAB
\item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are
\begin{align*}
s_1 &= \left\{-0.8098\pm 0.4951j,-2.8409,-3.8327\right\}\\
s_2 &= \left\{-0.4057\pm 0.3501j,-3.1385,-3.4421\right\}\\
s_3 &= \left\{-1.0795,-2.1289\pm0.7193j,-5.691\right\}
\end{align*}
\end{enumerate}
\end{enumerate}
\end{document}
答案2
AndréC 的答案有一点变化:
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{enumitem}
\begin{document}
\begin{enumerate}
\item
\begin{enumerate}[align=right,leftmargin=4.4em]
\item[(a) -- (b)] See MATLAB
\item[(c)] For this problem, increasing $R$ seems to scale the control effort down at the cost of slowing down the states' response (the system is less oscillatory compared to the original), while increasing the elements of $Q$ seems to increase the control effort, which increases the states' response at the cost of making $\theta\left(t\right)$ more oscillatory than the original combination. In fact, one can verify that the poles of each system are
\begin{align*}
s_1 & = \{-0.8098\pm 0.4951j,-2.8409,-3.8327\}\\
s_2 & = \{-0.4057\pm 0.3501j,-3.1385,-3.4421\}\\
s_3 & = \{-1.0795,-2.1289\pm 0.7193j,-5.691\}
\end{align*}
\end{enumerate}
\end{enumerate}
\end{document}