不平等现象已经超出了文本宽度的范畴

不平等现象已经超出了文本宽度的范畴

下面写出的两个不等式(紧接着 \vdots 的不等式)超出了边界。下面是 MWE:

\documentclass[12pt,a4paper]{report}
\makeatletter
% these two slashes-commands for continuous chapter numbering in parts of the document
\makeatother
\usepackage{titlesec}
\titleformat{\chapter}{\normalfont\huge}{\thechapter.}{20pt}{\huge\bf} %for chapter headings
\RequirePackage{etoolbox}
\usepackage{tikz-cd} % and in the above line to use commutative diagrams
\usepackage{amsfonts}
\usepackage[utf8]{inputenc}
\usepackage{amsthm}
% below four lines to just one or two cyrillic letter
\DeclareFontFamily{U}{wncy}{}
\DeclareFontShape{U}{wncy}{m}{n}{<->wncyr10}{}
\DeclareSymbolFont{mcy}{U}{wncy}{m}{n}
\DeclareMathSymbol{\Sh}{\mathord}{mcy}{"58} 
 %Cyrillic letter command over
\usepackage{sagetex}
\usepackage[toc]{appendix} % to make appendi appear in the table of contents
 \usepackage{amssymb}  %to use direct sum symbol
 \usepackage{graphicx} %toinsert images
 \usepackage{amsmath} %to use matrices
 \usepackage{hyperref}
 \usepackage{bm} % to use bold font in math mode use \bm{ insert math mode text}
 \usepackage{mathrsfs} %for scripted english characters
 \usepackage{mathtools}
 \usepackage{tikz-cd} % to draw commutative diagrams
 \usepackage{enumitem}

\begin{align*}
\begin{split}
h(P_n)  \leq \frac{1}{m^2}(2h(P_{n-1})+C'_1+C_2) & = \frac{2}{m^2}h(P_{n-1}) + \frac{C'_1+C_2}{m^2} \\
& \leq  \frac{2}{m^2} \Big(\frac{1}{m^2}(2h(P_{n-2})\frac{C'_1+C_2}{m^2} \Big) + \frac{C'_1+C_2}{m^2} \\
& = (\frac{2}{m^2})^2 h(P_{n-2}) + \Big( \frac{1}{m^2}+\frac{2}{(m^2)^2} \Big)(C'_1+C_2) \\
\vdots \\
& \leq (\frac{2}{m^2})^n h(P) + \frac{1}{m^2} \Big( 1+ \frac{2}{m^2}+ \ldots + \frac{2^{n-1}}{(m^2)^{n-1}} \Big)(C'_1+C_2) \\
& \leq (\frac{2}{m^2})^n h(P) + \frac{1}{m^2} \Big( 1+ \frac{2}{m^2} + \frac{2^2}{(m^2)^2} + \ldots  \Big)(C'_1+C_2) \\
& = (\frac{2}{m^2})^n h(P) + \frac{(C'_1+C_2)}{m^2-2} \\
& \leq \frac{1}{2^n}h(P)+ \frac{1}{2}(C'_1+C_2) \text{       $m \geq 2$}\\
\end{split}
\end{align*}
If $n$ is sufficiently large so that $2^n$ exceeds $h(P)$ and $\frac{h(P)}{2^n} < 1$ then 
\[
h(P_n) \leq 1+ \frac{1}{2}(C'_1+C_2)
\]
\end{document}

在此处输入图片描述

(上图的垂直线表示文本块的边缘)

我该如何正确地书写它们以使它们不超出文本宽度?

答案1

为了实现您在帖子中陈述的格式化目标,您应该在 的第一个实例处引入(a)一个额外的对齐点\leq和(b)在 的第一个实例之前引入一个换行符&=

此外,您可能希望对表达式进行修改,并提供更多有关各个步骤中发生的情况的信息。这样,您的读者会更容易理解您的论点。例如,如果您用\vdots实际的单词替换,例如,您的读者可能会很感激Applying $n-2$ additional backward subtitution steps, we further find。请参阅以下代码和屏幕截图以获取更多建议。

顺便说一句,我认为明确说明要求m^2>2无穷和收敛并因此达到所述极限是一种好的形式。(当然,该条件m^2>2由您的后续条件满足m\ge 2。)这意味着相关的弱不等式实际上是严格的不等式。

以下屏幕截图以红色突出显示了我应用的主要更改。为简单起见,下面显示的代码省略了所有\color\textcolor命令。

在此处输入图片描述

\documentclass[12pt,a4paper]{report}
\usepackage{mathtools}
\allowdisplaybreaks
\begin{document}
Setting $\widetilde{C}=C'_1+C_2>0$, we find
\begin{align*}
h(P_n)  
&\leq \frac{1}{m^2}\bigl(2h(P_{n-1})+\widetilde{C}\,\bigr)\\
&=    \frac{2}{m^2}h(P_{n-1}) + \frac{1}{m^2}\widetilde{C}\\
&\leq \frac{2}{m^2} {\underbrace{\Bigl(\frac{2}{m^2}h(P_{n-2})
      +\frac{1}{m^2}\widetilde{C} \Bigr)}_{\ge h(P_{n-1})}} 
      +\frac{1}{m^2}\widetilde{C} \\
&=    \Bigl(\frac{2}{m^2}\Bigr)^{\!2} h(P_{n-2}) 
      +\frac{1}{m^2}\Bigl[1 +\frac{2}{m^2} \Bigr]\widetilde{C}\,. \\
\intertext{Applying $n-2$ additional backward subtitution steps, we further find}
h(P_n)
&\leq \Bigl(\frac{2}{m^2}\Bigr)^{\!n} h(P) 
      +\frac{1}{m^2} \Bigl[\,\sum_{j=0}^{n-1}\Bigl(\frac{2}{m^2}\Bigr)^{\!j} 
      \,\Bigr]\widetilde{C} \\
&<   \Bigl(\frac{2}{m^2}\Bigr)^{\!n} h(P) 
      +\frac{1}{m^2} {\underbrace{\Bigl[\,\sum_{j=0}^{\infty}
      \Bigl(\frac{2}{m^2}\Bigr)^{\!j} \,\Bigr]}_{=m^2/(m^2-2)}}\widetilde{C} 
      \quad\text{for $m^2>2$}\\
&=    \Bigl(\frac{2}{m^2}\Bigr)^{\!n} h(P) 
      + \frac{1}{m^2-2}\,\widetilde{C} \\
&\leq \frac{1}{2^n}h(P)+ \frac{1}{2}\widetilde{C} 
      \quad\text{for $m\ge2$ and hence $2/m^2\le 1/2$.}
\intertext{If $n$ is sufficiently large so that $h(P)<2^n$ and hence $h(P)/2^n<1$,}
h(P_n) &< 1 + \frac{1}{2}\widetilde{C}= 1+\frac{1}{2}(C'_1+C_2)\,.
\end{align*}
\end{document}

在此处输入图片描述

\documentclass[12pt,a4paper]{report}
\usepackage{mathtools}
\allowdisplaybreaks
\begin{document}
\begin{align*}
h(P_n)  
&\leq \frac{1}{m^2}\bigl(2h(P_{n-1})+\widetilde{C}\,\bigr) 
      \quad\text{where $\widetilde{C}\equiv C'_1+C_2>0$}\\
&=    \frac{2}{m^2}h(P_{n-1}) + \frac{1}{m^2}\widetilde{C}\\
&\leq \frac{2}{m^2} {\underbrace{\Bigl(\frac{2}{m^2}h(P_{n-2})
      +\frac{1}{m^2}\widetilde{C} \Bigr)}_{\ge h(P_{n-1})}} 
      +\frac{1}{m^2}\widetilde{C} \\
&=    \Bigl(\frac{2}{m^2}\Bigr)^{\!2} h(P_{n-2}) 
      +\frac{1}{m^2}\Bigl[1 +\frac{2}{m^2} \Bigr]\widetilde{C} \\
&\vdotswithin{=} \text{\footnotesize[$n-2$ further backward substitution steps]}\\
&\leq \Bigl(\frac{2}{m^2}\Bigr)^{\!n} h(P) 
      +\frac{1}{m^2} \Bigl[\,\sum_{j=0}^{n-1}\Bigl(\frac{2}{m^2}\Bigr)^{\!j} 
      \,\Bigr]\widetilde{C} \\
&<    \Bigl(\frac{2}{m^2}\Bigr)^{\!n} h(P) 
      +\frac{1}{m^2} {\underbrace{\Bigl[\,\sum_{j=0}^{\infty}
      \Bigl(\frac{2}{m^2}\Bigr)^{\!j} \,\Bigr]}_{=m^2/(m^2-2)}}\widetilde{C} 
      \quad\text{for $m^2>2$}\\
&=    \Bigl(\frac{2}{m^2}\Bigr)^{\!n} h(P) 
      + \frac{1}{m^2-2}\,\widetilde{C} \\
&\leq \frac{1}{2^n}h(P)+ \frac{1}{2}\widetilde{C} 
      \quad\text{for $m\ge2$ and hence $2/m^2\le 1/2$.}
\end{align*}
If $n$ is sufficiently large so that $2^n\ge h(P)$ and hence $h(P)/2^n \le 1$,
\[
h(P_n) < 1 + \frac{1}{2}\widetilde{C}\equiv 1+\frac{1}{2}(C'_1+C_2)\,.
\]
\end{document}

答案2

只需移动对齐点。也可以使用\vdotswithin{=}编辑:根据建议,我让所有括号都一致。有两个版本,一个是\Bigl(\Bigr),另一个是\left(\right)。至于哪个更好看,就看个人喜好了。

\documentclass[12pt,a4paper]{report}
\usepackage{mathtools}
\begin{document}
\begin{align*}
h(P_n)  &\leq \frac{1}{m^2}(2h(P_{n-1})+C'_1+C_2)  = \frac{2}{m^2}h(P_{n-1}) + \frac{C'_1+C_2}{m^2} \\
& \leq  \frac{2}{m^2} \Bigl(\frac{1}{m^2}(2h(P_{n-2})\frac{C'_1+C_2}{m^2} \Bigr) + \frac{C'_1+C_2}{m^2} \\
& = \Bigl(\frac{2}{m^2}\Bigr)^2 h(P_{n-2}) + \Big( \frac{1}{m^2}+\frac{2}{(m^2)^2} \Big)(C'_1+C_2) \\
&\vdotswithin{=} \\
& \leq \Bigl(\frac{2}{m^2}\Bigr)^n h(P) + \frac{1}{m^2} \Bigl( 1+ \frac{2}{m^2}+
\ldots + \frac{2^{n-1}}{(m^2)^{n-1}} \Bigr)(C'_1+C_2) \\
& \leq \Bigl(\frac{2}{m^2}\Bigr)^n h(P) + \frac{1}{m^2} \Bigl( 1+ \frac{2}{m^2}
+ \frac{2^2}{(m^2)^2} + \ldots  \Bigr)(C'_1+C_2) \\
& = \Bigl(\frac{2}{m^2}\Bigr)^n h(P) + \frac{(C'_1+C_2)}{m^2-2} \\
& \leq \frac{1}{2^n}h(P)+ \frac{1}{2}(C'_1+C_2) \quad\text{if } m \geq 2\\
\end{align*}

\begin{align*}
h(P_n)  &\leq \frac{1}{m^2}(2h(P_{n-1})+C'_1+C_2)  = \frac{2}{m^2}h(P_{n-1}) + \frac{C'_1+C_2}{m^2} \\
& \leq  \frac{2}{m^2} \left(\frac{1}{m^2}(2h(P_{n-2})\frac{C'_1+C_2}{m^2} \right) + \frac{C'_1+C_2}{m^2} \\
& = \left(\frac{2}{m^2}\right)^2 h(P_{n-2}) + \Big( \frac{1}{m^2}+\frac{2}{(m^2)^2} \Big)(C'_1+C_2) \\
&\vdotswithin{=} \\
& \leq \left(\frac{2}{m^2}\right)^n h(P) + \frac{1}{m^2} \left( 1+ \frac{2}{m^2}+
\ldots + \frac{2^{n-1}}{(m^2)^{n-1}} \right)(C'_1+C_2) \\
& \leq \left(\frac{2}{m^2}\right)^n h(P) + \frac{1}{m^2} \left( 1+ \frac{2}{m^2}
+ \frac{2^2}{(m^2)^2} + \ldots  \right)(C'_1+C_2) \\
& = \left(\frac{2}{m^2}\right)^n h(P) + \frac{(C'_1+C_2)}{m^2-2} \\
& \leq \frac{1}{2^n}h(P)+ \frac{1}{2}(C'_1+C_2) \quad\text{if } m \geq 2\\
\end{align*}

\end{document}

在此处输入图片描述

在此处输入图片描述

答案3

看看以下结果是否可以接受:

在此处输入图片描述

\documentclass[12pt,a4paper]{report}
\usepackage{amssymb}  %to use direct sum symbol
\usepackage{mathtools}

%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%

\begin{document}
\begin{align*}
    \MoveEqLeft
h(P_n)  \leq \frac{1}{m^2}\bigl(2h(P_{n-1})+C'_1+C_2\bigr)        \\ 
    & = \frac{2}{m^2}h(P_{n-1}) + \frac{C'_1+C_2}{m^2} q\\
    & \leq  \frac{2}{m^2} \Bigl(\frac{1}{m^2}(2h(P_{n-2})\frac{C'_1+C_2}{m^2}\Bigr) + \frac{C'_1+C_2}{m^2} \\
    & = \Bigl(\frac{2}{m^2}\bigr)^2 h(P_{n-2}) + \Bigl( \frac{1}{m^2}+\frac{2}{(m^2)^2}\Bigr)(C'_1+C_2) \\
    &   \hspace{0.25\linewidth}\vdots \\
    & \leq \Bigl(\frac{2}{m^2}\Bigr)^n h(P) + \frac{1}{m^2} \Bigl(1+ \frac{2}{m^2}+ \ldots + \frac{2^{n-1}}{(m^2)^{n-1}}\Bigr)(C'_1+C_2) \\
    & \leq \Bigl(\frac{2}{m^2}\Bigr)^n h(P) + \frac{1}{m^2} \Bigl(1+ \frac{2}{m^2} + \frac{2^2}{(m^2)^2} + \ldots  \Bigr)(C'_1+C_2) \\
    & = \Bigl(\frac{2}{m^2}\Bigr)^n h(P) + \frac{(C'_1+C_2)}{m^2-2} \\
    & \leq \frac{1}{2^n}h(P)+ \frac{1}{2}(C'_1+C_2), \quad m\geq 2\\
\end{align*}
If $n$ is sufficiently large so that $2^n$ exceeds $h(P)$ and $\frac{h(P)}{2^n} < 1$ then
\[
h(P_n) \leq 1+ \frac{1}{2}(C'_1+C_2)
\]
\end{document}

编辑:考虑@Mico 关于括号的评论。

相关内容