我试图输入这个非常长的方程,但没有成功。我从 Mathematica 中得到这个结果并复制了它。出于某种原因,括号的形状没有根据分数的高度改变。
我尝试过使用自动线制动器,但\usepackage{breqn}
没有\begin{dmath}
成功。
-\frac{2 u_g \cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos ^2\left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}-\frac{4 \pi \tau_y \cosh ^2\left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos ^2\left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 h \pi u_g \cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 \pi \tau_y \cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{2 \pi \tau_y \cos \left(\frac{\pi (h+z)}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{\pi (h+z)}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)}-\frac{2 u_g \cos \left(\frac{\pi z}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)}-\frac{2 \pi \tau_y \cosh \left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi (h+z)}{D}\right) \sin \left(\frac{\pi (h+z)}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)}+\frac{2 u_g \cos \left(\frac{\pi z}{D}\right) \cosh \left(\frac{\pi z}{D}\right) \sin ^2\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right) \cos \left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}-\frac{2 u_g \cosh ^2\left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 \pi \tau_y \cos \left(\frac{\pi z}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi z}{D}\right) \sin \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+u_g
有什么建议么?
答案1
像这样吗?
\documentclass{article}
\usepackage[letterpaper,margin=1in]{geometry} % set page parameters appropriately
\usepackage{amsmath} % for 'align*' env.
\begin{document}
Put $\lambda=h\pi/D$, $\mu=\pi z/D$, and $\nu=\lambda+\mu$. Put
$P=\cos(2\lambda)+\cosh(2\lambda)$,
$Q=\cos^2\lambda \cosh^2\lambda + \sin^2\lambda \sinh^2\lambda$, and
$R=\cosh\lambda \sinh\lambda - \cos\lambda \sin\lambda$. Then
\begin{align*}
u_g
&-\frac{2 u_g \cosh\lambda \sin\lambda \sin\mu \sinh\mu \cos^2\lambda}{PR}
-\frac{4\pi \tau_y \cosh^2\lambda \sin\mu \sinh\mu \cos^2\lambda}{f\rho_0 DPR} \\
&+\frac{4 h\pi u_g \cosh\lambda \sin\mu \sinh\mu \cos\lambda}{DPR/Q}
+\frac{4\pi \tau_y \cosh\lambda \sin\mu \sinh\mu \cos\lambda}{f\rho_0 DPR/Q}\\
&+\frac{2\pi \tau_y \cos\nu \cosh\lambda \sinh\nu \cos\lambda}{f\rho_0 DP}
-\frac{2 u_g \cos\mu \cosh\lambda \cosh\mu \cos\lambda}{P}\\
&-\frac{2\pi \tau_y \cosh\lambda \cosh\nu \sin\nu \cos\lambda}{f\rho_0 DP}
+\frac{2 u_g \cos\mu \cosh\mu \sin^2\lambda \sinh\lambda \cos\lambda}{PR} \\
&-\frac{2 u_g \cosh^2\lambda \sin\mu \sinh\lambda \sinh\mu \cos\lambda}{PR}
+\frac{4\pi \tau_y \cos\mu \cosh\lambda \cosh\mu \sin\lambda \sinh\lambda \cos\lambda}{f\rho_0 DPR}\,.
\end{align*}
\end{document}
附录,受到@Thev 的后续评论的启发:一旦证明了 Mathematica 的大喇叭公式可以显示为 10 个\frac
表达式(加上一个单独u_g
项)的总和,就可以(应该??)寻找进一步的方法使公式更易于理解。例如,可以注意到 10 个\frac
表达式中有 5 个是 的倍数2u_g
,而其他 5 个是 的倍数\frac{2\pi\tau_y}{f\rho_0 D}
。还可以对分子进行更多组织;例如,可以强制按\lambda
-项在\mu
-项之前在\nu
-项之前进行排序,同时按\cos
、\cos^2
、\cosh
、\sin
、\sin^2
、进行二次\sinh
排序。收集这些想法,并根据@Thev 的建议增加行距,最终可能会得到以下结果(屏幕截图中的水平线表示文本块的宽度):
%% (compile with the same preamble as above)
\begin{align*}
u_g+2u_g \smash{\biggl\{}
&{-}\frac{\cos^2\lambda \cosh\lambda \sin\lambda \sin\mu \sinh\mu}{PR}
+\frac{2\pi h \cos\lambda \cosh\lambda \sin\mu \sinh\mu}{DPR/Q}
-\frac{\cos\lambda \cosh\lambda \cos\mu \cosh\mu}{P}\\[0.75ex]
&\quad+\frac{\cos\lambda \sin^2\lambda \sinh\lambda \cos\mu \cosh\mu}{PR}
-\frac{\cos\lambda \cosh^2\lambda \sinh\lambda \sin\mu \sinh\mu}{PR}
\smash{\biggr\}} \\[1.5ex]
{}+\frac{2\pi\tau_y}{f\rho_0 D} \smash{\biggl\{}
&{-}\frac{2 \cos^2\lambda \cosh^2\lambda \sin\mu \sinh\mu}{PR}
+\frac{2\pi \cos\lambda \cosh\lambda \sin\mu \sinh\mu}{PR/Q}
+\frac{\cos\lambda \cosh\lambda \cos\nu \sinh\nu}{P}\\[0.75ex]
&\quad-\frac{\cos\lambda \cosh\lambda \cosh\nu \sin\nu}{P}
+\frac{2 \cos\lambda \cosh\lambda \sin\lambda \sinh\lambda \cos\mu \cosh\mu}{PR}
\smash{\biggr\}}\,.
\end{align*}
我毫不怀疑可以进行进一步的调整...
答案2
让 tex 做一些内联替换和内联分数。
\documentclass{article}
\begin{document}
\begin{flushleft}
$\displaystyle
\alpha=\frac{h \pi }{D},
\beta=\frac{\pi z}{D}
\gamma=\frac{2 h \pi }{D}
$
\def\za{h \pi}
\def\zb{D}
\def\zc{\pi z}
\def\zd{2 h \pi }
In
$\displaystyle
\let\left\relax
\let\right\relax
\def\frac#1#2{%
\def\zz{#1}\def\zzz{#2}%
\ifx\zzz\zb
\ifx\zz\za
\alpha
\else
\ifx\zz\zc
\beta
\else
\ifx\zz\zd
\gamma
\else
(#1)/D
\fi
\fi
\fi
\else
\penalty-1000(#1)/(#2)%
\fi}
-\frac{2 u_g \cosh \left(\frac{h \pi }{D}\right) \sin
\left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right)
\sinh \left(\frac{\pi z}{D}\right) \cos ^2\left(\frac{h \pi
}{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh
\left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h
\pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin
^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi
}{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi
}{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos
^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi
}{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos
^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)}\right)}-\frac{4 \pi \tau_y
\cosh ^2\left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi
z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos
^2\left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2
h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)
\left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh
\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos
\left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi
}{D}\right)}\right)}+\frac{4 h \pi u_g \cosh \left(\frac{h \pi
}{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh
\left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D
\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi
}{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi
}{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos
^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi
}{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos
^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 \pi \tau_y
\cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi
z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos
\left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h
\pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)
\left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h
\pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos
\left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi
}{D}\right)}\right)}+\frac{2 \pi \tau_y \cos \left(\frac{\pi
(h+z)}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \sinh
\left(\frac{\pi (h+z)}{D}\right) \cos \left(\frac{h \pi
}{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi
}{D}\right)+\cosh \left(\frac{2 h \pi
}{D}\right)\right)}-\frac{2 u_g \cos \left(\frac{\pi
z}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \cosh
\left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi
}{D}\right)}{\cos \left(\frac{2 h \pi }{D}\right)+\cosh
\left(\frac{2 h \pi }{D}\right)}-\frac{2 \pi \tau_y \cosh
\left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi (h+z)}{D}\right)
\sin \left(\frac{\pi (h+z)}{D}\right) \cos \left(\frac{h \pi
}{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi
}{D}\right)+\cosh \left(\frac{2 h \pi
}{D}\right)\right)}+\frac{2 u_g \cos \left(\frac{\pi
z}{D}\right) \cosh \left(\frac{\pi z}{D}\right) \sin
^2\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)
\cos \left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi
}{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)
\left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh
\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos
\left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi
}{D}\right)}\right)}-\frac{2 u_g \cosh ^2\left(\frac{h \pi
}{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{h
\pi }{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos
\left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi
}{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)
\left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh
\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos
\left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi
}{D}\right)}\right)}+\frac{4 \pi \tau_y \cos \left(\frac{\pi
z}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \cosh
\left(\frac{\pi z}{D}\right) \sin \left(\frac{h \pi }{D}\right)
\sinh \left(\frac{h \pi }{D}\right) \cos \left(\frac{h \pi
}{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi
}{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)
\left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi
}{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh
^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh
\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos
\left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi
}{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh
^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi
}{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+u_g
$
\end{flushleft}
\end{document}