我有下表
$\label{Table}
\begin{tabularx}{\textwidth}{@{} c>{\hsize=0.5\hsize}C
{\hsize=1.5\hsize}C
@{} }
\toprule
Name & Symmetry group & Generators of the group \\
\midrule
P1 & Cyclic group $ C_{5} $ & $(1,2,3,4,5)$ \\
\midrule
P2 & Primitive group (15,2) & $ (1,15,7,5,12)$ $(2,9,13,14,8)$ $(3,6,10,11,4), $ $ (1,4,5)$ $(2,8,10$ $)(3,12,15)$ $(6,13,11)$ $(7,9,14)$ \\
\midrule
P3 & Primitive group (21,2) & $(1,7,12,16,19,21,6)$, $(2,8,13,17,20,5,11)$, $(3,9,14,18,4,10,15)$,
$(4,6,5)$, $(9,11,10)$, $(13,15,14)$, $(16,18,17)$, $(19,20,21)$ \\
\midrule
P4 & Primitive group (45,2) & $ ( 1, 2, 7)$ $( 3,11,27)$ $( 4,14,31)$ $( 5,18,32)$ $( 6,20,36)$ $( 8,24,39)$ $( 9,25,28)$ $(10,26,42)$ $(12,15,16)$ $(13,30,40)$ $(17,19,21)$ $(22,35,44)$ $(23,33,29)$ $(34,43,37)$ $(38,45,41)$,$ ( 1, 3, 5, 6, 7,22,13,23)$ $( 2, 8, 9,10)$ $( 4,15,16,17,14,21,19,12
)$ $(11,28,29,38,44,25,20,37)$ $(18,33,34,24,40,36,41,39)$ $(26,43,35,32,42,45,27,
30)$, $( 1, 4)$ $( 3,12)$ $( 5,19)$ $( 6,21)$ $( 7,14)$ $( 8,10)$ $(11,20)$ $(13,16)$ $(15,23)$ $
(17,22)$ $(18,33)$ $(24,41)$ $(25,28)$ $(26,43)$ $(27,32)$ $(29,44)$ $(30,35)$ $(34,39)$ $(36,40)$ $(42,45) $ \\
\bottomrule
\end{tabularx}
\end{table}$
在我的pdf中是这样的:
怎么了?
答案1
周围的$
符号肯定是错误的。
这是一种可能更简单的排版表格的方法,无需猜测列宽。
\documentclass{article}
\usepackage{amsmath}
\usepackage{tabularx,booktabs}
\begin{document}
\begin{table}[htp]
% shorthand for easing input in this particular table
\newcommand{\desc}[1]{\begin{tabular}[t]{@{}l@{}}#1\end{tabular}}
\caption{ILP-feasibility problems}\label{Table-ILP}
\begin{tabularx}{\textwidth}{@{} l l >{\raggedright\arraybackslash}X @{}}
\toprule
Name & \desc{Symmetry \\ group} & Generators of the group \\
\midrule
P1 & \desc{Cyclic \\ group \\ $C_{5}$} &
$(1,2,3,4,5)$ \\
\midrule
P2 & \desc{Primitive \\ group \\ $(15,2)$} &
$(1,15,7,5,12)$ $(2,9,13,14,8)$ $(3,6,10,11,4)$,
$(1,4,5)$ $(2,8,10)$ $(3,12,15)$ $(6,13,11)$ $(7,9,14)$ \\
\midrule
P3 & \desc{Primitive \\ group \\ $(21,2)$} &
$(1,7,12,16,19,21,6)$, $(2,8,13,17,20,5,11)$, $(3,9,14,18,4,10,15)$,
$(4,6,5)$, $(9,11,10)$, $(13,15,14)$, $(16,18,17)$, $(19,20,21)$ \\
\midrule
P4 & \desc{Primitive \\ group \\ $(45,2)$} &
$(1,2,7)$ $(3,11,27)$ $(4,14,31)$ $(5,18,32)$ $( 6,20,36)$ $(8,24,39)$
$(9,25,28)$ $(10,26,42)$ $(12,15,16)$ $(13,30,40)$ $(17,19,21)$ $(22,35,44)$
$(23,33,29)$ $(34,43,37)$ $(38,45,41)$,
$(1,3,5,6,7,22,13,23)$ $(2,8,9,10)$ $(4,15,16,17,14,21,19,12)$
$(11,28,29,38,44,25,20,37)$ $(18,33,34,24,40,36,41,39)$ $(26,43,35,32,42,45,27,30)$,
$(1,4)$ $(3,12)$ $(5,19)$ $(6,21)$ $(7,14)$ $(8,10)$ $(11,20)$ $(13,16)$ $(15,23)$
$(17,22)$ $(18,33)$ $(24,41)$ $(25,28)$ $(26,43)$ $(27,32)$ $(29,44)$ $(30,35)$
$(34,39)$ $(36,40)$ $(42,45)$ \\
\bottomrule
\end{tabularx}
\end{table}
\end{document}
在生成器之间放置逗号没有明显的一致性,因此请修复它。
答案2
为了多样化,这里还有另一个tabularx
基于 的解决方案,它(a)设置第二列的宽度,以便标题(“对称组”)只是适合,并且 (b) 取消了\midrule
有利于 的内部指令\addlinespace
。哦,我假设您希望生成器列表是一个逗号分隔的列表。
\documentclass{article}
\usepackage{tabularx,booktabs}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}
\newlength\mylen
\settowidth\mylen{Symmetry Group} % determine width of 2nd column
\begin{document}
\begin{table}[htbp]
\setlength\tabcolsep{4pt} % default value: 6pt
\caption{A caption}
\label{Table}
\begin{tabularx}{\textwidth}{@{} l >{\raggedright}p{\mylen} L @{}}
\toprule
Name & Symmetry group & Generators of the group \\
\midrule
P1 & Cyclic group $ C_{5} $
& $(1,2,3,4,5)$ \\
\addlinespace
P2 & Primitive group (15,2)
& $(1,15,7,5,12)$, $(2,9,13,14,8)$, $(3,6,10,11,4)$, $(1,4,5)$,
$(2,8,10)$, $(3,12,15)$, $(6,13,11)$, $(7,9,14)$ \\
\addlinespace
P3 & Primitive group (21,2)
& $(1,7,12,16,19,21,6)$, $(2,8,13,17,20,5,11)$, $(3,9,14,18,4,10,15)$,
$(4,6,5)$, $(9,11,10)$, $(13,15,14)$, $(16,18,17)$, $(19,20,21)$ \\
\addlinespace
P4 & Primitive group (45,2)
& $(1, 2, 7)$, $(3,11,27)$, $(4,14,31)$, $(5,18,32)$, $(6,20,36)$,
$(8,24,39)$, $(9,25,28)$, $(10,26,42)$, $(12,15,16)$, $(13,30,40)$,
$(17,19,21)$, $(22,35,44)$, $(23,33,29)$, $(34,43,37)$, $(38,45,41)$,
$(1, 3, 5, 6, 7,22,13,23)$, $(2, 8, 9,10)$, $(4,15,16,17,14,21,19,12)$,
$(11,28,29,38,44,25,20,37)$, $(18,33,34,24,40,36,41,39)$,
$(26,43,35,32,42,45,27, 30)$, $(1, 4)$, $(3,12)$, $(5,19)$, $(6,21)$,
$(7,14)$, $(8,10)$, $(11,20)$, $(13,16)$, $(15,23)$ $(17,22)$, $(18,33)$,
$(24,41)$, $(25,28)$, $(26,43)$, $(27,32)$, $(29,44)$, $(30,35)$,
$(34,39)$, $(36,40)$, $(42,45)$ \\
\bottomrule
\end{tabularx}
\end{table}
\end{document}