我想制作一个带有边际直方图的散点图,类似于所做的这里,但我希望轴为对数对数。我尝试过这个:
\documentclass[border=5mm]{standalone}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}[
/pgfplots/scale only axis,
/pgfplots/width=6cm,
/pgfplots/height=6cm
]
% The scatterplot
\begin{loglogaxis}[
name=main axis % Name the axis, so we can position the histograms relative to this axis
]
\addplot [only marks, mark size=1.5] table {random.dat};
\end{loglogaxis}
% The histogram for the x axis
\begin{semilogxaxis}[
anchor=south west,
at=(main axis.north west),
height=2cm,
xtick=\empty
]
\addplot [
hist={data=x}, % By default, the y values would be used for calculating the histogram
fill=gray!50
] table {random.dat};
\end{semilogxaxis}
% The histogram for the y axis
\begin{semilogyaxis}[
anchor=north west,
at=(main axis.north east),
width=2cm,
ytick=\empty
]
\addplot [
% For swapping the x and y axis, we have to change a couple of options...
hist={handler/.style={xbar interval}}, % ... use bars instead of columns ...
x filter/.code=\pgfmathparse{rawy}, % ... interpret the x values of the histogram as y values
y filter/.code=\pgfmathparse{rawx}, % ... and vice versa.
fill=gray!50,
] table {random.dat};
\end{semilogyaxis}
\end{tikzpicture}
\end{document}
但是,我明白了:
random.dat
-1.034556182675299 -1.088642639137081
-1.062642392542183 -1.730800229782827
2.112061236824446 0.4213052508263926
0.2081414092873681 0.1178499381944298
0.9996769569924666 2.315473894804006
-1.860016360692352 -1.80583336044917
1.73369575407621 1.368173161256781
-0.7429308663836777 -0.320890575343841
-0.1979146573912954 -0.4365080476459813
0.4716501224453675 0.7643018830581477
1.174380766341545 2.934973750859623
0.6901490963059546 0.5055566964399909
-0.5225274899322595 -2.336402501215872
-0.04752524566243782 0.9918382785064426
-0.02545715784606146 0.6179587619354383
-1.692445541259954 0.3233798554565113
-0.230370492420001 -0.5392176955328299
0.6038059014476774 0.6821182440059813
-1.076804609398595 -0.9837056700351312
-0.1857789391152365 -1.136939273688752
-0.258208790502279 -0.1805152973444488
-0.7195599671240704 -0.8479059081735516
1.092570499347843 2.00377759530567
-0.2696062294740929 -1.132458520464889
-0.8269924788320669 -1.927117798964017
-0.1515366074290889 0.0230071339470114
-0.7103213503616422 -1.403963958892485
0.8829530102950023 1.857490683255044
1.05866349916398 0.7198501681466614
1.096466379804495 1.086525729480579
-1.32303169638362 -0.1533202087887688
0.3739354686781606 -0.03156926687636152
1.489342072707867 2.1872117646764
-0.224900534871041 0.8163766108669269
-1.587347359907595 -2.086313437701529
1.464685243093322 1.374198533145222
-1.267338251647083 -1.195439494319655
0.1251550598405904 -0.7780312340895389
0.8180551984329997 0.3179571635755173
-0.7259672309991982 1.024286153382652
-0.6347060382424617 -1.995450039583252
-0.1275879531600163 -0.9701248657421334
-1.035154214040656 -0.4345218059923297
1.112830442579158 0.9110796108289648
0.1403940614228557 0.3930966756241305
-0.5990597080153418 -2.147831326516866
-0.7035026366060558 0.8009160824851748
1.090688799524646 0.9976237777767307
0.4195835157027016 1.612462920311422
-0.2394595550413869 0.1403177798195741
1.444637305245141 1.793725253759151
0.2510826487708296 -0.9172402778780173
1.050970237168825 0.3429458548719517
-0.1547669371612623 -0.2953877678347505
-0.7077964330012175 -1.577410023672865
-1.281557650915341 -0.7019585910796728
-0.6925092860234755 0.1296573951006644
0.8917492915726694 0.8043114131875437
1.376261454402816 0.2900129349329763
0.6801069893656928 1.430824000405047
-0.2484495635256442 -0.8330824219547133
-0.4795979211826638 -2.492087400741266
1.514924124643029 2.54293071805945
0.622154322642365 0.6249697071569896
0.6434471902987018 0.6624842288917316
2.009568724897284 1.295013757951034
-0.1611358858000567 0.5972825224341278
-0.4958826045353003 0.6552123781234539
-1.546608039056112 -3.092251590256194
0.01963903742918456 -0.6358681023557348
-1.217115357590687 -1.427228304202919
-0.03318482365966646 1.244676317998937
0.1441806659737843 -0.3917848725994295
0.7327139102596605 0.179905661977997
-0.2221623219999036 2.013269450880812
-1.766951404705671 -2.055174273761125
0.1820313811963468 0.5457314419902735
1.114346122011083 1.207326114691013
-1.673897686055655 0.04471554925774202
-1.88098566831986 -0.342043266131189
0.6156730283674012 0.5612745693047205
-0.4702721814316267 -0.04543544172550568
-1.732071951319274 -3.252174730928117
0.9137493443444534 1.152947925633689
0.6178392723810281 0.4132280927224983
0.2967867922623997 -0.07841919518125928
1.396752176208157 1.878892768919695
0.6920887677132427 -0.6696496175333456
-0.2888105031888556 0.05544842238228853
0.8817399280652953 -0.5140856584657298
0.8830220191165575 0.6892944908867348
0.1547642100344178 -0.1064069449067648
0.1267761409114066 0.2672715326585765
-0.1738327099717071 -0.3007997877815971
-0.2222141791185833 -0.3913443288370902
0.3135248241729749 -1.076410808299793
-1.042708487268197 1.133781748500934
0.172987850082249 1.793537418388745
-1.919319965387205 -0.9735790026351395
-1.837375345395248 -0.6512990567395325