你好,我正在准备我的演讲,但我的乳胶代码有问题。
我确定我正在使用“amsmath”包。
我尝试修复这个问题,但仍然有很多错误。
\begin{frame}{ZIP regression models with covariates}
\begin{itemize}
\item Regression-type models can adjust for covariate effects and assess relationships between key predictors and the response
\item Covariates enter ZIP regression model at both the Bernoulli zero-inflation and Poison count stages\\
$\rar$ 2 sets of parameters corresponding to p and $\lambda$\\
~~~~~~~~ \(\begin{cases}
\(\lambda\) : loglinear model \(\rar log(\frac{p}{1-p}) = \textbf{X_1\alpha} = \alpha_0 + \alpha_1X_{11} + \alpha_2X_{12} + \dots + \alpha_mX_{1m}\)\\
p : logit model \(\rar log(\lambda) = \textbf{X_2\beta} = \beta_0 + \beta_1X_{21} + \beta_2X_{22} + \dots + \beta_lX_{2l}\)
\end{cases}\)
\vspace{0.2cm}
\item \(\boldsymbol{X_1} = (1, X_{11}, X_{12}, \dots, X_{1m})\) : covariate vector included in the zero stage\\
\(\boldsymbol{X_2} = (1, X_{21}, X_{22}, \dots, X_{2l})\) : covariate vector included in the Poisson stage
\item \(\boldsymbol{\alpha} = (\alpha_0, \alpha_1, \dots, \alpha_m)^{T}, \boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_l)^{T}\)\\
$\rar$ corresponding coefficient vectors
\end{itemize}
\end{frame}
有什么不对?
答案1
\usepackage{amsmath}
\begin{document}
\begin{frame}{Zip model}
\begin{itemize}
\item Probability mass function of Y
$$*Pr(Y = y\mid\lambda, p) =
\begin{cases}
p + (1 - p)e^{-\lambda}, & \text{if $y = 0$}\\
(1 - p)\frac{e^{-\lambda}\lambda^{y}}{y!}, & \text{if $y > 0$}
\end{cases} $$
\item $$\begin{aligned}E(Y) =& (1 - p)\lambda \\
*Var(Y) =& \lambda(1 - p)(1 + p\lambda)\end{aligned}$$
\end{itemize}
\end{frame}
\end{document}
您可以$$...$$
替换$...$
\item $\boldsymbol{X_1} = (1, X_{11}, X_{12}, \dots, X_{1m})$ : covariate vector included in the zero stage\\
$\boldsymbol{X_2} = (1, X_{21}, X_{22}, \dots, X_{2l})$: covariate vector included in the Poisson stage
\item $\boldsymbol{\alpha} = (\alpha_0, \alpha_1, \dots, \alpha_m)^{T}, \boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_l)^{T}$\\
和 :
$$\begin{cases}
\lambda : \text{loglinear model}\ \log(\frac{p}{1-p}) = \textbf{$X_{1\alpha}$} = \alpha_0 + \alpha_{1X}_{11} + \alpha_{2X}_{12} + \dots + \alpha_{mX}_{1m} \\
p : \text{logit model} \ \log(\lambda) = \textbf{$X_{2\beta}$} = \beta_0 + \beta_{1X}_{21} + \beta_{2X}_{22} + \dots + \beta_{lX}_{2l}
\end{cases}$$
我没有得到\item
bcs 我没有使用它的包
答案2
\documentclass{beamer}
\usepackage{amsmath}
\begin{document}
\begin{frame}{ZIP model}
\begin{itemize}
\item Probability mass function of Y
\(*Pr(Y = y\mid\lambda, p) =
\begin{cases}
p + (1 - p)e^{-\lambda}, & \text{if y = 0}\\
(1 - p)\frac{e^{-\lambda}\lambda^{y}}{y!}, & \text{if y} > 0
\end{cases} \)
\item \(\begin{aligned}E(Y) =& (1 - p)\lambda \\
*Var(Y) =& \lambda(1 - p)(1 + p\lambda)\end{aligned}\)
\end{itemize}
\end{frame}
\end{document}