我创建了一个类似于第一部分的新环境,以便能够在其中输入方程式。
\newenvironment{question}{\begin{enumerate}\bfseries}
{\end{enumerate}}
\newenvironment{answer}{\par\vspace{0.2cm}\normalfont}
{\vspace{0.2cm}}
我想要做的是把方程式放在回答环境,以及那些在问题他们处于这样的状态:
这是该示例的完整代码:
\documentclass[12pt, letterpaper]{article}
% ------------------------------------
% Preamble
% ------------------------------------
\usepackage{amsmath}
\newenvironment{question}{\begin{enumerate}\bfseries}
{\end{enumerate}}
\newenvironment{answer}{\par\vspace{0.2cm}\normalfont}
{\vspace{0.2cm}}
\DeclareMathSizes{12}{14}{10}{8}
% ------------------------------------
\begin{document}
\begin{question}
\item Identify if the given vector
fields can be electric fields
\begin{itemize}
\item \(\vec{A} = A(r)\hat{r}\)
\item \(\vec{B} = \frac{k}{r^2}\hat{\varphi}\)
\item \(\vec{C} = c(x^2 \hat{i} + y^2\hat{j} + z^2\hat{k})\)
\end{itemize}
If true, determine the charge density
that produces them
\begin{answer}
We're going to beging with the equation
\begin{equation}\tag{1.1}
\vec{A} = A(r)\hat{r}
\end{equation}
We know that
\begin{equation}\tag{1.2}
\nabla \times \vec{E}\vec{(r)}=0
\end{equation}
\end{answer}
\item Calculate the electric field in a
distance \textit{z} from the center of a
square loop of side \textit{a} charged
with a uniform chatge density \(\lambda_0\)
\begin{answer}
In cylindrical coordinates, the charge density of this system is:
\small
\begin{equation}\tag{2.1}
\rho \left( \vec{r}^{\prime} \right) =
\frac{\lambda}{\rho_{c}^{\prime}} \delta\left(\rho_{c}^{\prime}-a/2\right) \delta\left(\phi^{\prime}-\phi_{0}\right) \Theta\left(a/2-z\right) \Theta\left(-a/2+z\right)
\end{equation}
\normalfont
Calculating the electric potential:
\begin{equation}\tag{2.2}
\varphi(\vec{r}) =
\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)}{\left\|\vec{r}-\vec{r}^{\prime}\right\|}
\end{equation}
\end{answer}
\end{question}
\end{document}
我怎样才能做到这一点而不必把\标签在每个方程中手动输入吗?
答案1
欢迎来到 TeX.SE...您可以使用标签来实现这一点\numberwithin{equation}{enumi}
\documentclass[12pt, letterpaper]{article}
% ------------------------------------
% Preamble
% ------------------------------------
\usepackage{amsmath}
\newenvironment{question}{\begin{enumerate}\bfseries}
{\end{enumerate}}
\newenvironment{answer}{\par\vspace{0.2cm}\normalfont}
{\vspace{0.2cm}}
\DeclareMathSizes{12}{14}{10}{8}
% ------------------------------------
\begin{document}
\begin{question}
\item Identify if the given vector
fields can be electric fields
\begin{itemize}
\item \(\vec{A} = A(r)\hat{r}\)
\item \(\vec{B} = \frac{k}{r^2}\hat{\varphi}\)
\item \(\vec{C} = c(x^2 \hat{i} + y^2\hat{j} + z^2\hat{k})\)
\end{itemize}
If true, determine the charge density
that produces them
\numberwithin{equation}{enumi}
\begin{answer}
We're going to beging with the equation
\begin{equation}
\vec{A} = A(r)\hat{r}
\end{equation}
We know that
\begin{equation}
\nabla \times \vec{E}\vec{(r)}=0
\end{equation}
\end{answer}
\item Calculate the electric field in a
distance \textit{z} from the center of a
square loop of side \textit{a} charged
with a uniform chatge density \(\lambda_0\)
\begin{answer}
In cylindrical coordinates, the charge density of this system is:
\begin{equation}
\rho \left( \vec{r}^{\prime} \right) =
\frac{\lambda}{\rho_{c}^{\prime}} \delta\left(\rho_{c}^{\prime}-a/2\right) \delta\left(\phi^{\prime}-\phi_{0}\right) \Theta\left(a/2-z\right) \Theta\left(-a/2+z\right)
\end{equation}
\normalfont
Calculating the electric potential:
\begin{equation}
\varphi(\vec{r}) =
\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)}{\left\|\vec{r}-\vec{r}^{\prime}\right\|}
\end{equation}
\end{answer}
\end{question}
\end{document}