我的代码是
\documentclass{book}
\usepackage{wrapfigure}
\newtheorem{problem}{P}[chapter]
\begin{document}
A circle is drawn in a sector of a larger circle
\begin{problem}
\begin{wrapfigure}{r}{0.5\textwidth}
\centering
\includegraphics[width=0.38\textwidth]{TrigFig23.pdf}
\end{wrapfigure}
\noindent
of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the arc of the sector. Find the radius of the smaller circle.
\end{problem}
\end{document}
此代码根本没有生成图形(也没有显示错误)。我wrapfig
也使用了该包。请帮忙!!
答案1
使用两个小页面来代替wrapfig
:
\documentclass{book}
\usepackage{graphicx}
\usepackage[export]{adjustbox}
\newtheorem{problem}{P}[chapter]
\begin{document}
\begin{problem}
\begin{minipage}[t]{0.5\textwidth}
A circle is drawn in a sector of a larger circle of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the arc of the sector. Find the radius of the smaller circle.
\end{minipage}%
\begin{minipage}[t]{0.5\textwidth}
\centering
\includegraphics[width=0.38\textwidth,valign=t]{example-image}
\end{minipage}
\end{problem}
\end{document}
答案2
我建议使用这种变体布局,使用insbox
一组普通的 TeX 宏包:
\documentclass{book}
\usepackage{graphicx}
\input{insbox}
\newtheorem{problem}{P}[chapter]
\begin{document}
\begin{problem}\leavevmode%
\InsertBoxR{-1}{\includegraphics[width=0.38\textwidth]{example-image}}\par\noindent
A circle is drawn in a sector of a larger circle of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the arc of the sector. Find the radius of the smaller circle.
\end{problem}
\end{document}
答案3
由于“问题”是一个冲突的环境,阻止了图形的放置,而“wrapfigure”被放置在段落的开头,因此您可以提供一个假的段落~~\vspace*{-\baselineskip}
\documentclass{book}
\usepackage{wrapfig}
\usepackage{graphicx}
\newtheorem{problem}{P}[chapter]
\begin{document}
A circle is drawn in a sector of a larger circle
\begin{wrapfigure}{r}{0.5\textwidth}
\centering
\includegraphics[width=0.38\textwidth]{example-image-a.pdf}
\end{wrapfigure}
~~\vspace*{-\baselineskip}
\begin{problem}
\noindent
of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the
arc of the sector. Find the radius of the smaller circle.
\end{problem}
\end{document}