答案1
这看起来就像你想要的:
\documentclass{article}
\usepackage{amsmath}
\renewcommand{\theequation}{4.\arabic{equation}}
\setcounter{equation}{5}
\begin{document}
\begin{align}
A + \delta \hat{A} &= \begin{bmatrix} \hat{Q}_t\\\hat{Q}_b\end{bmatrix} R,&& \|\delta \hat{A}\| = O (\epsilon \|A\|),\\
\hat{Q}_t^T \hat{Q}_t + \hat{Q}_b^T \hat{Q}_b &= I_n + \Delta_1,&&\|\Delta_1\|=O(\epsilon),\\
\hat{Q}_t^T \hat{Q}_t - \hat{Q}_b^T \hat{Q}_b &= \hat{L}^T \hat{L} + \Delta_2,&& \Delta_2^T = \Delta_2,~ \|\Delta_2\|_2 = O(\epsilon).
\end{align}
\end{document}
答案2
像这样:
使用该mathtools
包,定义新的分隔符对:
\documentclass{article}
\usepackage{amssymb, mathtools}
\DeclarePairedDelimiter\norm{\lVert}{\rVert}
\renewcommand{\theequation}{4.\arabic{equation}}
\setcounter{equation}{5}
\begin{document}
\begin{align}
A + \delta \hat{A}
& = \begin{bmatrix} \hat{Q}_t \\ \hat{Q}_b\end{bmatrix} R,
&& \norm*{\delta \hat{A}} = O (\epsilon \norm*{A}),\\
\hat{Q}_t^T \hat{Q}_t + \hat{Q}_b^T \hat{Q}_b
& = I_n + \Delta_1,
&& \norm*{\Delta_1}=O(\epsilon),\\
\hspace{-1.2cm}\hat{Q}_t^T \hat{Q}_t - \hat{Q}_b^T \hat{Q}_b
& = \hat{L}^T \hat{L} + \Delta_2,
&& \Delta_2^T = \Delta_2, \norm*{\Delta_2}_2 = O(\epsilon).
\end{align}
\end{document}