最近,我在尝试让表格和图表保持在各个部分内并保持我想要的顺序时遇到了很多问题。我有 2 个表格,它们被格式化为 2 个单独的子部分。我尝试将它们分开,但当我使用 \FloatBarrier 时,空间会变得非常大。请帮忙,哈哈。
\documentclass[12 point, titlepage]{article}
\usepackage[hdivide={1in,*,1in}, vdivide={1in,*,1in}]{geometry}
\usepackage{amsmath, graphicx, longtable, acronym, verbatim, subfigure, tikz, listings, color, float}
\usepackage[section]{placeins}
\lstdefinestyle{customc}{belowcaptionskip=1\baselineskip,breaklines=true,frame=L,xleftmargin=\parindent,language=C,showstringspaces=false,
basicstyle=\footnotesize\ttfamily,keywordstyle=\bfseries\color{green!40!black},commentstyle=\itshape\color{purple!40!black},identifierstyle=\color{blue},stringstyle=\color{orange},}\lstdefinestyle{customasm}{belowcaptionskip=1\baselineskip,frame=L,xleftmargin=\parindent,language=[x86masm]Assembler,basicstyle=\footnotesize\ttfamily,commentstyle=\itshape\color{purple!40!black},
}\lstset{ basicstyle=\scriptsize,numbers=left,numberstyle=\footnotesize,stepnumber=1,numbersep=10pt,backgroundcolor=\color{white},frame=single,captionpos=b,breaklines=true,breakatwhitespace=false
}
\begin{document}
\author{ Daniel Webb\\
Electrical Engineering-UNL}
\date{02//2020}
\title{ECEN 347 Lab 2\\
Date: 3/01/2021 }
\maketitle
\pagebreak
\section{Abstract}
\section{Introduction}
\section{Experiment}
\subsection{Transistor Operation Design (Transistor Bias)}
Design a bias circuit in Fig. for operation in (cutoff, triode, saturation) and note which one has lowest power consumption given $R_1$ =100 ohms, $R_2=1000 ohms$
\begin{figure}[H]
\centering
\includegraphics[scale=0.7]{MOSFET CIRCUIT.PNG}
\caption{Mosfet Circuit }
\label{fig}
\end{figure}
1) Place the LED in series with R, $V_{DD}$= 5 V while varying $V_{GS}$ from 0 V to 5 V. Record when the LED starts turning on; this will determine when the transistor is in the on state for overcoming Gate Source voltage required. \\
2) Remove the LED and increase $V_{GS}$ observed by 1 V. Step up $V_{DD}$ from 0V : 8V in 1V increments. Measure $I_{DS}$ and $V_{DS}$ for each step value and calculate $R_{DS}$ from these values and Power found by P = power dissipated from transistor ($P_{R_{DS}}$) + drain connected resistor ($P_R$)
\subsection{Transistor Inverter, Switching operation}
\subsection{Propogation Delay of Transistor Inverter}
\subsection{Logic Gates}
\section{Results}
\subsection{Transistor Operation Design (Transistor Bias)}
%Summarize the component selection R and operation set up (VGS,VGS(th),VDD,and P) of your design. For each resistor, include VGS(th),VGS and one table with the values of ID,VDS,RDS, P , and PR and for RDS each value of VDD(Numeral 2).
%Operation setup ($V_{GS}$,$V_{GS}$(th),$V_{DD}$,and P) of design }
\subsubsection{Part2: 100 ohm R}
1)$V_{GS}=$ that turns on LED //
2)Adjusted $V_{GS}= $ //
\begin{table}[]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$ \\
\hline\hline
0 & & & & & & & \\
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
7 & & & & & & & \\
8 & & & & & & & \\
\hline
\end{tabular}
\caption{100 ohm R selection }
\label{tab: table name}
\end{table}
\FloatBarrier
\subsubsection{Part2: 1000 Ohm R}
1)$V_{GS}=$ that turns on LED //
2)Adjusted $V_{GS}= $ //
\begin{table}[]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$ \\
\hline\hline
0 & & & & & & & \\
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
7 & & & & & & & \\
8 & & & & & & & \\
\hline
\end{tabular}
\caption{1000 ohm R selection }
\label{tab: table name}
\end{table}
\section{Conclusion}
\end{document}
答案1
我调整了几个地方的标记,以达到
基本上,您不必担心浮动的位置,直到文本完成为止,然后在最后,您可以\clearpage
在部分标题之前添加(如果需要)以清除浮动得太远的任何浮动。
% no 12 point option \documentclass[12 point, titlepage]{article}
\documentclass[12pt, titlepage]{article}
\usepackage[hdivide={1in,*,1in}, vdivide={1in,*,1in}]{geometry}
\usepackage{amsmath, graphicx, longtable, acronym, verbatim, subfigure, tikz, listings, color, float}
%\usepackage[section]{placeins}
\lstdefinestyle{customc}{belowcaptionskip=1\baselineskip,breaklines=true,frame=L,xleftmargin=\parindent,language=C,showstringspaces=false,
basicstyle=\footnotesize\ttfamily,keywordstyle=\bfseries\color{green!40!black},commentstyle=\itshape\color{purple!40!black},identifierstyle=\color{blue},stringstyle=\color{orange},}\lstdefinestyle{customasm}{belowcaptionskip=1\baselineskip,frame=L,xleftmargin=\parindent,language=[x86masm]Assembler,basicstyle=\footnotesize\ttfamily,commentstyle=\itshape\color{purple!40!black},
}\lstset{ basicstyle=\scriptsize,numbers=left,numberstyle=\footnotesize,stepnumber=1,numbersep=10pt,backgroundcolor=\color{white},frame=single,captionpos=b,breaklines=true,breakatwhitespace=false
}
\begin{document}
\author{ Daniel Webb\\
Electrical Engineering-UNL}
\date{02//2020}
\title{ECEN 347 Lab 2\\
Date: 3/01/2021 }
\maketitle
\section{Abstract}
\section{Introduction}
\section{Experiment}
\subsection{Transistor Operation Design (Transistor Bias)}
Design a bias circuit in Fig. for operation in (cutoff, triode, saturation) and note which one has lowest power consumption given $R_1$ =100 ohms, $R_2=1000 ohms$
\begin{figure}[htp]
\centering
\includegraphics[scale=0.7]{example-image}
\caption{Mosfet Circuit }
\label{fig}
\end{figure}
\begin{enumerate}
\item Place the LED in series with R,
$V_{DD} = 5\mathrm{V}$ while varying $V_{GS}$ from 0 V to 5 V. Record when the LED starts turning on; this will determine when the transistor is in the on state for overcoming Gate Source voltage required.
\item Remove the LED and increase $V_{GS}$ observed by 1 V. Step up $V_{DD}$ from 0V : 8V in 1V increments. Measure $I_{DS}$ and $V_{DS}$ for each step value and calculate $R_{DS}$ from these values and Power found by P = power dissipated from transistor ($P_{R_{DS}}$) + drain connected resistor ($P_R$)
\end{enumerate}
\subsection{Transistor Inverter, Switching operation}
\subsection{Propogation Delay of Transistor Inverter}
\subsection{Logic Gates}
\section{Results}
\subsection{Transistor Operation Design (Transistor Bias)}
%Summarize the component selection R and operation set up (VGS,VGS(th),VDD,and P) of your design. For each resistor, include VGS(th),VGS and one table with the values of ID,VDS,RDS, P , and PR and for RDS each value of VDD(Numeral 2).
%Operation setup ($V_{GS}$,$V_{GS}$(th),$V_{DD}$,and P) of design }
\subsubsection{Part2: 100 ohm R}
\begin{enumerate}
\item $V_{GS}=$ that turns on LED
\item Adjusted $V_{GS}= $
\end{enumerate}
\begin{table}[htp]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$ \\
\hline\hline
0 & & & & & & & \\
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
7 & & & & & & & \\
8 & & & & & & & \\
\hline
\end{tabular}
\caption{100 ohm R selection }
\label{tab: table name}
\end{table}
\subsubsection{Part2: 1000 Ohm R}
\begin{enumerate}
\item %V_{GS}=$ that turns on LED
\item Adjusted $V_{GS}= $
\end{enumerate}
\begin{table}[htp]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$ \\
\hline\hline
0 & & & & & & & \\
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
7 & & & & & & & \\
8 & & & & & & & \\
\hline
\end{tabular}
\caption{1000 ohm R selection }
\label{tab: table namez}
\end{table}
\section{Conclusion}
\end{document}