我想在 flalign 环境中重写我在这里使用 enumerate 所做的操作。这样做的原因是为了对这个方程进行编号和标记。
但是,当我尝试写五六行之后,出现空白页或编译失败的情况。
\documentclass[a4paper,titlepage]{book}
\usepackage[sans,nouppercase]{frontespizio}
\usepackage[utf8]{inputenc}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{stackengine}
\usepackage{amsthm}
\usepackage{accents}
\newcommand*\underdot[1]{%
\underaccent{\dot}{#1}}
\renewcommand{\arraystretch}{1.7}
\setstackgap{S}{2pt}
\setstackgap{L}{.7\baselineskip}
\def\stackalignment{l}
\newbox\gnBoxA
\newdimen\gnCornerHgt
\setbox\gnBoxA=\hbox{$\ulcorner$}
\global\gnCornerHgt=\ht\gnBoxA
\newdimen\gnArgHgt
\def\Godelnum #1{%
\setbox\gnBoxA=\hbox{$#1$}%
\gnArgHgt=\ht\gnBoxA%
\ifnum \gnArgHgt<\gnCornerHgt \gnArgHgt=0pt%
\else \advance \gnArgHgt by -\gnCornerHgt%
\fi \raise\gnArgHgt\hbox{$\ulcorner$} \box\gnBoxA %
\raise\gnArgHgt\hbox{$\urcorner$}}
\newbox\gnBoxA
\newdimen\gnCornerHgt
\setbox\gnBoxA=\hbox{$\ulcorner$}
\global\gnCornerHgt=\ht\gnBoxA
\newdimen\gnArgHgt
\def\Godelnum #1{%
\setbox\gnBoxA=\hbox{$#1$}%
\gnArgHgt=\ht\gnBoxA%
\ifnum \gnArgHgt<\gnCornerHgt \gnArgHgt=0pt%
\else \advance \gnArgHgt by -\gnCornerHgt%
\fi \raise\gnArgHgt\hbox{$\ulcorner$} \box\gnBoxA %
\raise\gnArgHgt\hbox{$\urcorner$}}
\begin{document}
\begin{enumerate}
\item[$\mathsf{PAT}\vdash\vartheta(x)\leftrightarrow$]$\exists s \exists t(x=(s\d{=}t) \wedge s^{\circ} = t^{\circ}) \lor $
\item[] $\exists s \exists t(x=(\d{\neg}s\d{=}t)\wedge s^{\circ} \neq t^{\circ})\lor$
\item[]$\exists y (Sent_{T}(y)\wedge x=(\d{\neg}\d{\neg}y)\wedge T\Godelnum{\vartheta(\Dot{y})})\lor$
\item[]$ \exists y \exists z(Sent_{T}(y\d{\wedge}z)\wedge x = (y\d{\wedge}z)\lor (T\Godelnum{\vartheta(\dot{y})}\wedge T\Godelnum{\vartheta(\Dot{z})}))\lor$
\item[]$\exists y \exists z(Sent_{T}(y \d{\wedge}z)\wedge x =(\d{\neg}(y\d{\wedge}z))\wedge(T\Godelnum{\vartheta(\d{\neg}\Dot{y})}\lor T\Godelnum{\vartheta(\d{\neg}\Dot{z})}))\lor$
\item[]$\exists y \exists z(Sent_{T}(y\d{\lor}z)\wedge x = (y \d{\lor}z)\wedge(T\Godelnum{\vartheta(\Dot{y})}\lor T\Godelnum{\vartheta(\Dot{z})}))\lor$
\item[]$\exists y \exists z(Sent_{T}(y\d{\lor}z)\wedge x=(\d{\neg}(y \d{\lor}z))\wedge (T\Godelnum{\vartheta(\d{\neg}\Dot{y})}\wedge T\Godelnum{\vartheta(\d{\neg}\Dot{z})}))\lor$
\item[]$\exists v \exists y(Sent_{T}(\d{\forall}vy) \wedge x=(\d{\forall}vy)\wedge \forall T\Godelnum{\vartheta(y(t/v))})\lor$
\item[]$\exists v \exists y(Sent_{T}(\d{\forall}vy) \wedge x = (\d{\neg}\d{\forall}vy)\wedge \exists t T\Godelnum{\vartheta(\d{\neg}y(t/v))})\lor$
\item[]$\exists v \exists y(Sent_{T}(\d{\exists}vy)\wedge x = (\d{\exists}vy)\wedge \exists t T\Godelnum{\vartheta(y(t/v))})\lor$
\item[]$\exists v \exists y(Sent_{T}(\d{\exists}vy)\wedge x=(\d{\neg}\d{\exists}vy)\wedge\forall t T\Godelnum{\vartheta(\d{\neg}y(t/v))})\lor$
\item[]$\exists t(x=(\underdot{T}t)\wedge T\Godelnum{\vartheta(\underdot{t})})\lor$
\item[]$\exists t(x=(\d{\neg}\underdot{T}t)\wedge(T\Godelnum{\vartheta(\d{\neg}\underdot{t})}\lor \neg Sent_{T}(t^{\circ})))$
\end{enumerate}
\end{document}
这就是我尝试做的事情,正如我所说,它可以工作几行,但是当我尝试输入整个代码时出现错误。
\begin{flalign}
\mathsf{PAT}\vdash\vartheta(x) \leftrightarrow & \exists s \exists t(x=(s\d{=}t) \wedge s^{\circ} = t^{\circ}) \lor\\
& \exists s \exists t(x=(\d{\neg}s\d{=}t)\wedge s^{\circ} \neq t^{\circ})\lor \\
& \exists y (Sent_{T}(y)\wedge x=(\d{\neg}\d{\neg}y)\wedge T\Godelnum{\vartheta(\Dot{y})})\lor \\
& \exists y \exists z(Sent_{T}(y\d{\wedge}z)\wedge x = (y\d{\wedge}z)\lor T\Godelnum{\vartheta(\dot{y})}\wedge T\Godelnum{\vartheta(\Dot{z})}\lor \\
& \exists y \exists z(Sent_{T}(y \d{\wedge}z)\wedge x =(\d{\neg}(y\d{\wedge}z))\wedge(T\Godelnum{\vartheta(\d{\neg}\Dot{y})}\lor T\Godelnum{\vartheta(\d{\neg}\Dot{z})}))\lor \\
& \exists y \exists z(Sent_{T}(y\d{\lor}z)\wedge x = (y \d{\lor}z)\wedge(T\Godelnum{\vartheta(\Dot{y})}\lor T\Godelnum{\vartheta(\Dot{z})}))\lor \\
& \exists y \exists z(Sent_{T}(y\d{\lor}z)\wedge x=(\d{\neg}(y \d{\lor}z))\wedge T\Godelnum{\vartheta(\d{\neg}\Dot{y})}\wedge T\Godelnum{\vartheta(\d{\neg}\Dot{z})})\lor \\
& \exists v \exists y(Sent_{T}(\d{\forall}vy) \wedge x=(\d{\forall}vy)\wedge \forall T\Godelnum{\vartheta(y(t/v))})\lor \\
& \exists v \exists y(Sent_{T}(\d{\forall}vy) \wedge x = (\d{\neg}\d{\forall}vy)\wedge \exists t T\Godelnum{\vartheta(\d{\neg}y(t/v))})\lor \\
& \exists v \exists y(Sent_{T}(\d{\exists}vy)\wedge x = (\d{\exists}vy)\wedge \exists t T\Godelnum{\vartheta(y(t/v))})\lor \\
& \exists v \exists y(Sent_{T}(\d{\exists}vy)\wedge x=(\d{\neg}\d{\exists}vy)\wedge\forall t T\Godelnum{\vartheta(\d{\neg}y(t/v))})\lor \\
& \exists t(x=(\underdot{T}t)\wedge T\Godelnum{\vartheta(\underdot{t})})\lor \\
& \exists t(x=(\d{\neg}\underdot{T}t)\wedge(T\Godelnum{\vartheta(\d{\neg}\underdot{t})}\lor \neg Sent_{T}(t^{\circ})))
\end{flalign}