ConTexT 中枚举环境的头部文本后内联数学影响空间

ConTexT 中枚举环境的头部文本后内联数学影响空间

抱歉,这看起来很基础,但我刚刚从 LaTeX 转换过来。内联数学似乎会影响名为“示例”的枚举环境头后的间距。我该如何抵消这一点?

\defineenumeration[example][
   text=Example,
   before={\blank[medium]},
   after={\blank[medium]},
   alternative=serried,
   right=.,
   distance=0.5em,
   width=broad,
   headstyle=bold,
   titlestyle=bold,
]
\starttext
  \startexample
    Let $R$ be a ring and $M_n(R)$ be a collection of all $n\times n$ matrices with entries in 
    $R$. Then $M_n(R)$ is a ring. In particular, $M_n(\mathbb{Z})$, $M_n(\mathbb{R})$ and 
    $M_n(\mathbb{C})$ are all rings. Note that these rings are not generally commutative.
  \stopexample

  \startexample
    $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and $\mathbb{C}$ are all rings. They satisfy all the 
    axioms. $\mathbb{Z}$ is an integral domain and $\mathbb{Q}, \mathbb{R}$ and $\mathbb{C}$ are 
    fields.
  \stopexample
\stoptext

答案1

使用width=fit并将标题后的间距设置为零(感谢 Wolfgang Schuster 的评论):

%\setuppapersize[A6]
\defineenumeration[example][
   text=Example,
   before={\blank[medium]},
   after={\blank[medium]},
   alternative=serried,
   right=.,
   distance=0.5em,
   width=fit,
   stretch=0,
   shrink=0,
   headstyle=bold,
   titlestyle=bold,
]
\starttext
\startexample
Let $R$ be a ring and $M_n(R)$ be a collection of all $n\times n$ matrices with entries in  $R$. Then $M_n(R)$ is a ring. In particular, $M_n(\mathbb{Z})$, $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ are all rings. Note that these rings are not generally commutative.
\stopexample

\startexample
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and $\mathbb{C}$ are all rings. They satisfy all the axioms. $\mathbb{Z}$ is an integral domain and $\mathbb{Q}, \mathbb{R}$ and $\mathbb{C}$ are fields.
\stopexample
\stoptext

在此处输入图片描述

相关内容