我最近学会了如何在显示数学表达式周围放置一个框架,现在我想在框架中的文本中添加脚注。但是,当我尝试这样做时,脚注出现在框架的底部;我希望它出现在页。另外,在这种情况下,默认脚注符号是“a”;我希望它改用数字(从 1 开始)。我该如何实现这两个目标?
以下是 MWE:
\documentclass[12pt]{article}
\usepackage[a4paper,bindingoffset=0.2in,%
left=.5in,right=.5in,top=.5in,bottom=.5in,%
footskip=.25in]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amssymb}
\usepackage[framemethod=TikZ]{mdframed}
\begin{document}
%\maketitle
\mdfdefinestyle{MyFrame}{%
linecolor=black,
outerlinewidth=0.25pt,
roundcorner=2pt,
innertopmargin=\baselineskip,
innerbottommargin=\baselineskip,
innerrightmargin=20pt,
innerleftmargin=20pt,
backgroundcolor=white}
\begin{mdframed}[style=MyFrame]
\textbf{Change of Variables Theorem (in $\mathbb{R}^3$):}
\footnote{Jerrold E. Marsden and Anthony J. Tromba. 2003.%
In Vector calculus. W.H. Freeman, 387.}
Let $D^*$ be an elementary region in $\mathbb{R}^3$, let
$\Phi(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w))$ be a one-to-one
$C^1$ map from $D^*$ to $\mathbb{R}^3$, and let $D = \Phi(D^*)$.
Then
\begin{equation*}
\iiint\limits_{D} f(x,y,z) \, dx \,dy \, dz
= \iiint\limits_{D^*} f(x(u,v,w),y(u,v,w),z(u,v,w))
\left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right|
\, du \, dv \, dw.
\end{equation*}
\end{mdframed}
\end{document}
答案1
为了获得期望的结果,调整代码的最明显方法如下:
\documentclass[12pt]{article}
\usepackage[a4paper,bindingoffset=0.2in,%
left=.5in,right=.5in,top=.5in,bottom=.5in,%
footskip=.25in]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amssymb}
\usepackage[framemethod=TikZ]{mdframed}
\usepackage{footnote}
\begin{document}
%\maketitle
\mdfdefinestyle{MyFrame}{%
linecolor=black,
outerlinewidth=0.25pt,
roundcorner=2pt,
innertopmargin=\baselineskip,
innerbottommargin=\baselineskip,
innerrightmargin=20pt,
innerleftmargin=20pt,
backgroundcolor=white}
\savenotes
\begin{mdframed}[style=MyFrame]
\stepcounter{footnote}
\renewcommand{\thempfootnote}{\arabic{footnote}}
\textbf{Change of Variables Theorem (in $\mathbb{R}^3$):}\footnote{Jerrold E. Marsden and Anthony J. Tromba. 2003. In Vector calculus. W.H. Freeman, 387.} Let $D^*$ be an elementary region in $\mathbb{R}^3$, let $\Phi(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w))$ be a one-to-one $C^1$ map from $D^*$ to $\mathbb{R}^3$, and let $D = \Phi(D^*)$. Then
\begin{equation*}
\iiint\limits_{D} f(x,y,z) \, dx \,dy \, dz = \iiint\limits_{D^*} f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| \, du \, dv \, dw.
\end{equation*}
\end{mdframed}
\spewnotes
\end{document}
您将获得以下结果: