我已经准备好 MWE,但它没有正确对齐,
\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage{mathtools, nccmath}
\usepackage{array}
\begin{document}
\begin{equation}
\begin{array}{rl}
L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\left|I_{1}\right\rangle\right) & =L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{y x}\right\rangle\left|y^{\prime}\right\rangle\left|x^{\prime}\right\rangle\right)\\
& =\frac{1}{2^{n}}(\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{yx}\right\rangle\left|y^{\prime}\right\rangle\left|x^{\prime}\right\rangle+U_{Y X}\left(\left|P_{Y_{0} X_{0}}\right|\right)\left|Y_{0} X_{0}\right\rangle+U_{Y X}\left(\left|P_{Y_{1} X_{1}}\right\rangle\right)\left|Y_{1} X_{1}\right\rangle \\
& =\frac{1}{2^{n}}(\begin{array}{c}
\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{y x}\right\rangle\left|y^{\prime}\right\rangle\left|x^{\prime}\right\rangle+\left|p_{Y_{0} X_{0}}^{2} p_{Y_{0} X_{0}}^{3^{\prime}} \cdots p_{Y_{0} X_{0}}^{0^{\prime}} p_{Y_{0} X_{0}}^{1^{\prime}}\right\rangle\left|Y_{0} X_{0}\right\rangle \\
y x \neq Y_{0} X_{0}, Y_{1} X_{1}
\end{array}\\
\qquad+\left|p_{Y_{1} X_{1}}^{2^{\prime}} p_{Y_{1} X_{1}}^{3^{\prime}} \cdots p_{Y_{1} X_{1}}^{0^{\prime}} p_{Y_{1} X_{1}}^{1^{\prime}}\right\rangle\left|Y_{1} X_{1}\right\rangle
\end{array})
\end{equation}
\end{document}
请帮助我。
答案1
我想出了与 Enevevet 类似的解决方案,但间距更好。
- 我
@{}
在数组中使用它来抑制列间距。 {}
我在最后一个等式中的 + 之前添加,以便在两边获得适当的二元运算符间距。- 我放入
\displaystyle
数组列以获得一致的布局。
\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage{mathtools, nccmath}
\usepackage{array}
\begin{document}
\begin{align*}
L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\left|I_{1}\right\rangle\right) &
=L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}
\left|P_{yx}\right\rangle\left|y'\right\rangle\left|x'\right\rangle\right)\\
& =\frac{1}{2^{n}}\left(
\underset{y x \neq Y_{0} X_{0}, Y_{1} X_{1}}
{\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{yx}\right\rangle\left|y'\right\rangle\left|x'\right\rangle}
+U_{Y X}\left(\left|P_{Y_{0} X_{0}}\right|\right)\left|Y_{0} X_{0}\right\rangle+U_{Y X}\left(\left|P_{Y_{1}X_{1}}
\right\rangle\right)\left|Y_{1} X_{1}\right\rangle\right) \\
& =\frac{1}{2^{n}}\left(\begin{array}{@{}>{\displaystyle}r@{}>{\displaystyle}l@{}}
\underset{y x \neq Y_{0} X_{0}, Y_{1} X_{1}}
{\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{y x}\right\rangle\left|y'\right\rangle\left|x'\right\rangle} &
{}+\left|p_{Y_{0} X_{0}}^{2'} p_{Y_{0} X_{0}}^{3'} \cdots p_{Y_{0} X_{0}}^{0'} p_{Y_{0} X_{0}}^{1'}\right\rangle\left|Y_{0} X_{0}\right\rangle \\
& {}+\left|p_{Y_{1} X_{1}}^{2'} p_{Y_{1} X_{1}}^{3'} \cdots p_{Y_{1} X_{1}}^{0'} p_{Y_{1} X_{1}}^{1'}\right\rangle\left|Y_{1} X_{1}\right\rangle
\end{array}\right)\\
\end{align*}
\end{document}
答案2
还有一种可能性:我将方程嵌套在环境中fleqn
(来自nccmath
),并使用命令\DeclarePairedDelimiter
frommathtools
定义 an\abs
和 a\ket
命令,这使代码更具可读性。最后,我加载了geometry
更多合适的边距,以便方程式可以适应:
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage{nccmath,amssymb}
\usepackage{mathtools}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
\DeclarePairedDelimiter\ket\lvert\rangle
\begin{document}
\begin{fleqn}[\parindent]
\begin{equation}
\begin{aligned}
& L_{Y_1 X_1} L_{Y_0 X_0}\bigl(\ket{I_1}\bigr)= L_{Y_1 X_1} L_{Y_0 X_0}\left(\frac{1}{2ⁿ} ∑_{y=0}^{2ⁿ-1} ∑_{x=0}^{2ⁿ-1}\ket{P_{y x}} \ket{y'}\ket{x'}\right)\\
& =\frac{1}{2ⁿ}\Biggl(∑_{y=0}^{2ⁿ-1}\smashoperator{∑_{\substack{x=0\\[0.5ex]y x ≠ Y_0 X_0, Y_1 X_1}}^{2ⁿ-1}} %
\ket{P_{yx}}\ket{y'}\ket{x'}+U_{Y X}\bigl(\abs{P_{Y_0 X_0}}\bigr)\ket{Y_0 X_0}+ U_{Y X}\bigl(\ket{P_{Y_1 X_1}}\bigr)\ket{Y_1 X_1}\Biggr) \\
& =\begin{aligned}[t]\frac{1}{2ⁿ}\Biggl(
∑_{y=0}^{2ⁿ-1} \smashoperator{∑_{\substack{x=0\\y x ≠ Y_0 X_0, Y_1 X_1}}^{2ⁿ-1}}\ket{P_{y x}}\ket{y'}\ket{x'}& +\ket[\big]{p_{Y_0 X_0}^2 p_{Y_0 X_0}^{3' }⋯ p_{Y_0 X_0}^{0'} p_{Y_0 X_0}^{1'}}\ket{Y_0 X_0} \\[-4ex]
& +\ket[\big]{p_{Y_1 X_1}^{2'} p_{Y_1 X_1}^{3'} ⋯ p_{Y_1 X_1}^{0'} p_{Y_1 X_1}^{1'}}\ket{Y_1 X_1} \Biggr)
\end{aligned}
\end{aligned}
\end{equation}
\end{fleqn}
\end{document}
答案3
对于最后一个方程,我会使用multlined
。在我看来,带有它的方程结构更合乎逻辑。由于方程很宽,因此使用包\MoveEqLeft
中定义的。它还会加载,因此无需单独加载它。mathtools
amsmath
\documentclass{article}
\usepackage{geometry}
\usepackage{amssymb}
\usepackage{mathtools}
%--------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%
\begin{document}
\begin{align*}
\MoveEqLeft
L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\left|I_{1}\right\rangle\right) \\
& = L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\frac{1}{2^{n}}
\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}
\left|P_{yx}\right\rangle\left|y'\right\rangle\left|x'\right\rangle\right)\\
& = \frac{1}{2^{n}}\left(
\underset{y x \neq Y_{0} X_{0}, Y_{1} X_{1}}
{\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{yx}\right\rangle\left|y'\right\rangle\left|x'\right\rangle}
+ U_{Y X}\left(\left|P_{Y_{0} X_{0}}\right|\right)\left|Y_{0} X_{0}\right\rangle
+ U_{Y X}\left(\left|P_{Y_{1}X_{1}}
\right\rangle\right)\left|Y_{1} X_{1}\right\rangle\right) \\
& = \frac{1}{2^{n}}\left(%
\begin{multlined}
\underset{y x \neq Y_{0} X_{0}, Y_{1} X_{1}}
{\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{y x}\right\rangle\left|y'\right\rangle\left|x'\right\rangle} \\
+ \left|p_{Y_{0} X_{0}}^{2'} p_{Y_{0} X_{0}}^{3'} \cdots p_{Y_{0} X_{0}}^{0'} p_{Y_{0} X_{0}}^{1'}\right\rangle\left|Y_{0} X_{0}\right\rangle
+ \left|p_{Y_{1} X_{1}}^{2'} p_{Y_{1} X_{1}}^{3'} \cdots p_{Y_{1} X_{1}}^{0'} p_{Y_{1} X_{1}}^{1'}\right\rangle\left|Y_{1} X_{1}\right\rangle
\end{multlined}\right)
\end{align*}
\end{document}
(红线表示文本区域边框)
答案4
我会先使用align
环境,然后再array
使用环境。对于两个和下面的下标,我使用了\underset
因为下标是两个和共同的。最后,我得到了:
\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage{mathtools, nccmath}
\usepackage{array}
\begin{document}
\begin{align*}
L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\left|I_{1}\right\rangle\right) & =L_{Y_{1} X_{1}} L_{Y_{0} X_{0}}\left(\frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}\left|P_{y x}\right\rangle\left|y^{\prime}\right\rangle\left|x^{\prime}\right\rangle\right)\\
& =\frac{1}{2^{n}}\left(\underset{y x \neq Y_{0} X_{0}, Y_{1} X_{1}}{\displaystyle\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}}\left|P_{yx}\right\rangle\left|y^{\prime}\right\rangle\left|x^{\prime}\right\rangle+U_{Y X}\left(\left|P_{Y_{0} X_{0}}\right|\right)\left|Y_{0} X_{0}\right\rangle+U_{Y X}\left(\left|P_{Y_{1} X_{1}}\right\rangle\right)\left|Y_{1} X_{1}\right\rangle\right) \\
& =\frac{1}{2^{n}}\left(\begin{array}{rl}
\underset{y x \neq Y_{0} X_{0}, Y_{1} X_{1}}{\displaystyle\sum_{y=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1}}\left|P_{y x}\right\rangle\left|y^{\prime}\right\rangle\left|x^{\prime}\right\rangle &+\left|p_{Y_{0} X_{0}}^{2} p_{Y_{0} X_{0}}^{3^{\prime}} \cdots p_{Y_{0} X_{0}}^{0^{\prime}} p_{Y_{0} X_{0}}^{1^{\prime}}\right\rangle\left|Y_{0} X_{0}\right\rangle \\
&+\left|p_{Y_{1} X_{1}}^{2^{\prime}} p_{Y_{1} X_{1}}^{3^{\prime}} \cdots p_{Y_{1} X_{1}}^{0^{\prime}} p_{Y_{1} X_{1}}^{1^{\prime}}\right\rangle\left|Y_{1} X_{1}\right\rangle
\end{array}\right)
\end{align*}
\end{document}
注意:你忘了下\prime
标后面的2
代码第三行下