带有边距的编译问题

带有边距的编译问题

我遇到了一个问题,不同的计算机编译文件的方式不同。在我的台式计算机上,一切都像正常一样编译,但在我的新笔记本电脑上,底部边距被切掉了。我在两台计算机上都使用 TeXstudio 和 MiKTeX,并且我仔细检查了两台计算机是否都设置为在 MiKTeX 中使用标准信纸大小的纸张,所以这似乎不是问题。

我真的很困惑,我以前从未遇到过这个问题。感谢您提供的任何帮助!

\documentclass{article}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage{array}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{enumitem}
\usepackage{framed}
\usepackage[
top    = 1.00in,
bottom = 0.50in,
left   = 0.75in,
right  = 0.75in,
headsep= 0.15in]{geometry}

\pagestyle{fancy}
\lhead{MTH 2410}
\chead{Summary of Tests for Series}
\rhead{Page \thepage\ of \pageref{LastPage}}
\cfoot{}

\everymath{\displaystyle}
\setlength{\parindent}{0pt}

\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}

\begin{document}
{
%\setlength{\tabcolsep}{6pt}
%\setlength{\extrarowheight}{10pt}
\renewcommand{\arraystretch}{1.5}
\begin{table}[h!]
    \centering
        \begin{tabular}{C{2.9cm} C{2.6cm} C{3.46cm} C{3.2cm} L{3.5cm}}
            \toprule
            \textbf{Series or Test} & \textbf{Form of Series} & \textbf{Condition(s) for Convergence} & \textbf{Condition(s) for Divergence} & \textbf{Comments} \\
            \midrule
            Geometric Series & $\sum_{k=N}^{\infty} ar^k$, $a\ne 0$ \newline[1mm] $N=0,1,2,\dots$ & $|r|<1$ & $|r|\geq 1$ & If $|r|<1$, then the \newline[1mm] sum is $S=\frac{ar^N}{1-r}$. \\
            \midrule
            Telescoping Series & $\sum_{k=1}^{\infty}\big(b_k - b_{k+1}\big)$ & $\lim_{n\to \infty} S_n = L$, where \newline[1mm] $-\infty<L<\infty$ & $\lim_{n\to \infty} S_n$ DNE & Trick: Write out $S_n$, cancel terms, then evaluate $\lim_{n\to\infty} S_n$. \\
            \midrule
            Divergence & $\sum_{k=1}^{\infty} a_k$ & This test \underline{\textbf{CANNOT}} be used to show convergence! & $\lim_{k\to \infty} a_k \ne 0$ & Test is \textbf{inconclusive} if $\lim_{k\to\infty} a_k=0$. \\
            \midrule
            Integral ($f$ is continuous, positive, and decreasing) & $\sum_{k=1}^{\infty} a_k$, where \newline[1mm] $0<a_k=f(k)$ & $\int_1^{\infty}\! f(x)\, dx$ converges \newline[2mm] The series does \underline{\textbf{NOT}} converge to this value. & $\int_1^{\infty}\! f(x)\, dx$ diverges & Remainder satisfies \newline[1mm] $|R_n| \leq \int_n^{\infty}\! f(x)\, dx$ \\
            \midrule
            $p$-Series & $\sum_{k=1}^{\infty} \frac{1}{k^p}$ & $p>1$ & $p\leq 1$ & Useful for comparison tests. \\
            \midrule
            Ratio & $\sum_{k=1}^{\infty} a_k$ & $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|<1$ & $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|>1$ & Test is \textbf{inconclusive} \newline[1mm] if $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=1$. \\
            \midrule
            Root & $\sum_{k=1}^{\infty} a_k$ & $\lim_{k\to\infty}\sqrt[k]{|a_k|} < 1$ & $\lim_{k\to\infty}\sqrt[k]{|a_k|} > 1$ & Test is \textbf{inconclusive} \newline[1mm] if $\lim_{k\to\infty}\sqrt[k]{|a_k|} = 1$. \\
            \midrule
            Direct Comparison ($a_k,b_k>0$) & $\sum_{k=1}^{\infty} a_k$ & $0<a_k\leq b_k$ and \newline[1mm] $\textstyle\Sigma b_k$ converges. & $0<b_k\leq a_k$ and \newline[1mm] $\textstyle\Sigma b_k$ diverges. & $\textstyle \Sigma a_k$ is given; you supply $\textstyle \Sigma b_k$. \newline[1mm] The ``work'' is showing the inequality. \\
            \midrule
            Limit Comparison ($a_k,b_k>0$) & $\sum_{k=1}^{\infty} a_k$ & $\lim_{k\to\infty}\frac{a_k}{b_k} = L$, \newline[1mm] $0\leq L<\infty$, and \newline[1mm] $\textstyle\Sigma b_k$ converges. & $\lim_{k\to\infty}\frac{a_k}{b_k} = L$, \newline[1mm] $0<L\leq\infty$, and \newline[1mm] $\textstyle\Sigma b_k$ diverges. & $\textstyle \Sigma a_k$ is given; you supply $\textstyle \Sigma b_k$. \\
            \midrule
            Alternating \newline Series & $\sum_{k=1}^{\infty} (-1)^{k}a_k$, \newline[1mm] where $a_k> 0$ & $\lim_{k\to\infty} a_k = 0$ and \newline[1mm] $0<a_{k+1}\leq a_k$ & $\lim_{k\to\infty} a_k \ne 0$ & Remainder satisfies \newline[1mm] $|R_n|\leq a_{n+1}$ \\
            \midrule
            Absolute Convergence & $\sum_{k=1}^{\infty} a_k$ & $\sum_{k=1}^{\infty} |a_k|$ converges & n/a & If $\textstyle \Sigma |a_k|$ diverges, $\textstyle \Sigma a_k$ may be conditionally convergent. \\
            \bottomrule
        \end{tabular}
\end{table}
}

\underline{\textbf{Properties of Convergent Series}}\\[2mm]
Suppose that $\textstyle \sum a_k$ and $\textstyle \sum b_k$ converge to $A$ and $B$, respectively, and let $c$ be any real number.
\begin{enumerate}[noitemsep]
    \item The series $\textstyle \sum ca_k$ converges and $\textstyle \sum ca_k = c \sum a_k = cA$.
    
    \item The series $\textstyle \sum (a_k \pm b_k)$ converges and $\textstyle \sum (a_k \pm b_k) = \sum a_k \pm \sum b_k = A \pm B$.
    
    \item \textit{Whether} a series converges does not depend on a finite number of terms added to or removed from the series. However, the \textit{value} of a convergent series does change if nonzero terms are added or deleted.
\end{enumerate}
\end{document}

相关内容