我的代码:
\documentclass[11pt,letterpaper]{article}
\usepackage[lmargin=0.75in,rmargin=0.75in,tmargin=0.75in,bmargin=0.5in]{geometry}
\everymath{\displaystyle} % ------------------- % Packages %
------------------- \usepackage{ amsmath, % Math Environments amssymb, % Extended Symbols enumerate, % Enumerate
Environments graphicx, % Include Images lastpage, % Reference
Lastpage multicol, % Use Multi-columns multirow % Use Multi-rows
} \usepackage[framemethod=TikZ]{mdframed} \usepackage{tikz, tabularx}
\usepackage{graphics}
\newcolumntype{W}{>{\centering\arraybackslash}X}%Para agilizar las
columnas. % ------------------- % Font % -------------------
\usepackage[T1]{fontenc} \usepackage{charter}
% ------------------- % Commands % -------------------
\newcommand{\homework}[2]{\noindent\textbf{Nombre completo:
}\makebox[3in]{\hrulefill} \hfill \textbf{IQ 0312} \\ \textbf{Fecha
de entrega: #2} \hfill \textbf{Simulacro #1}\\}
\newcommand{\prob}{\noindent\textbf{Problema. }} \newcounter{problema}
\newcommand{\problem}{ \stepcounter{problema}% \noindent
\textbf{Problema \theproblem. }% } \newcommand{\pointproblem}[1]{
\stepcounter{problema}% \noindent \textbf{Problema \theproblem.} (#1
points)\,% } \newcommand{\pspace}{\par\vspace{\baselineskip}}
\newcommand{\ds}{\displaystyle}
% ------------------- % Theorem Environment % -------------------
\mdfdefinestyle{theoremstyle}{% frametitlerule=true,
roundcorner=5pt, linecolor=black, outerlinewidth=0.5pt,
middlelinewidth=0.5pt }
\mdtheorem[style=theoremstyle]{exercise}{\textbf{Problema}}
% ------------------- % Header & Footer % -------------------
\usepackage{fancyhdr}
\fancypagestyle{pages}{ %Headers \fancyhead[L]{} \fancyhead[C]{}
\fancyhead[R]{} \renewcommand{\headrulewidth}{0pt} %Footers
\fancyfoot[L]{} \fancyfoot[C]{} \fancyfoot[R]{\thepage \,de
\pageref{LastPage}} \renewcommand{\footrulewidth}{0.0pt} }
\headheight=0pt \footskip=14pt
\pagestyle{pages}
% ------------------- % Content % ------------------- \begin{document}
\homework{\#}{MM/DD}
% Question 1 \begin{exercise}\textit{JEE (Advanced)}: Mostre que
$$\frac{\cot x-1}{\cot x+1}=\frac{\cos{(2x)}}{1+\sin{(2x)}}$$
\end{exercise}
% Question 2 \begin{exercise} Mostre que \begin{enumerate}[(a)] \item
$\frac{\text{sen} \theta + \text{sen}{(2\theta)}}{1+\cos \theta +
\cos{(2\theta)}} = \tan \theta$ se $0 \leq \theta < \frac{\pi}{2}$
\item Se $\frac{\pi}{2} < \theta < \pi$, para qual(is) valor(es) de
$\theta$ a identidade na questão a) não é verdadeira?
\end{enumerate} \end{exercise}
% Question 3 \begin{exercise}\textit{College Trigonometry, Aufmann:}
Prove a identidade $$\frac{\text{tg} x}{1-\cot x}+\frac{\cot
x}{1-\text{tg} x}=\sec x \text{cosec} x + 1$$
\end{exercise}
\begin{exercise} Mostre que $\frac{\text{sen} x +
\text{sen}{(3x)}+\text{sen}{(5x)}}{\cos x +
\cos{(3x)}+\cos{(5x)}}=\text{tg}{3x}$ para todo $x$ para o qual
$\text{tg}{(3x)}$ é definida.
\end{exercise}
\begin{exercise} Se $f\left(\frac{x}{x-1}\right)=\frac{1}{x}$ para
todo $x\neq 0,1,$ e $0<\theta<\frac{\pi}{2}$, então encontre
$f(\sec^2\theta)$. \end{exercise}
\begin{exercise} \textit{New York State Mathematics League:} Encontre
$A$ tal que $0^\circ < A < 90^\circ$ e $\cos 41^\circ + \sin 41^\circ
= \sqrt2 \sin A$. \end{exercise}
\end{document}
我想做一些类似于这张照片中所示的模型(但同时删除“Jee Advanced”后面的“1”)。
如何将问题来源放在“问题”及其编号旁边?
答案1
解决方案如下tcolorbox
:
\documentclass[11pt,letterpaper]{article}
\usepackage[lmargin=0.75in,rmargin=0.75in,tmargin=0.75in,bmargin=0.5in]{geometry}
\everymath{\displaystyle} % ------------------- % Packages %-------------------
\usepackage{
amsmath, % Math Environments
amssymb, % Extended Symbols
enumerate, % Enumerate Environments
graphicx, % Include Images
lastpage, % Reference Lastpage
multicol, % Use Multi-columns
multirow % Use Multi-rows
}
\usepackage[framemethod=TikZ]{mdframed}
\usepackage{tikz, tabularx}
\usepackage{graphics}
%\newcolumntype{W}{>{\centering\arraybackslash}X}%Para agilizar las columnas. % ------------------- % Font % -------------------
\usepackage[T1]{fontenc}
\usepackage{charter}
% ------------------- % Commands % -------------------
\newcommand{\homework}[2]{\noindent\textbf{Nombre completo:}\makebox[3in]{\hrulefill} \hfill \textbf{IQ 0312} \\ \textbf{Fecha de entrega: #2} \hfill \textbf{Simulacro #1}\\}
\newcommand{\pointproblem}[1]{%
\stepcounter{problema}%
\noindent \textbf{Problema \theproblem.} (#1 points)\,%
}
\newcommand{\pspace}{\par\vspace{\baselineskip}}
\newcommand{\ds}{\displaystyle}
% ------------------- % Theorem Environment % -------------------
\usepackage[most]{tcolorbox}
\tcbuselibrary{theorems}
\newtcbtheorem{exercise}{Problema}%
{enhanced,
enhanced jigsaw,
breakable,
after skip=16pt,
toptitle=4pt,
bottomtitle=4pt,
left=6pt,
right=6pt,
boxrule=1pt,
titlerule=.5pt,
rounded corners,
arc=6pt,
opacityback=0,
colbacktitle=white,
coltitle=black,
fonttitle=\bfseries,
separator sign={~-},
}{ex}
% ------------------- % Header & Footer % -------------------
\usepackage{fancyhdr}
\fancypagestyle{pages}{ %Headers
\fancyhead[L]{} \fancyhead[C]{}
\fancyhead[R]{} \renewcommand{\headrulewidth}{0pt} %Footers
\fancyfoot[L]{} \fancyfoot[C]{} \fancyfoot[R]{\thepage \,de
\pageref{LastPage}} \renewcommand{\footrulewidth}{0.0pt} }
\headheight=0pt \footskip=14pt
\pagestyle{pages}
% ------------------- % Content % -------------------
\begin{document}
\homework{\#}{MM/DD}
% Question 1
\begin{exercise}{JEE (Advanced)}{}
Mostre que
$$\frac{\cot x-1}{\cot x+1}=\frac{\cos{(2x)}}{1+\sin{(2x)}}$$
\end{exercise}
% Question 2
\begin{exercise}{}{}
Mostre que \begin{enumerate}[(a)] \item
$\frac{\text{sen} \theta + \text{sen}{(2\theta)}}{1+\cos \theta +
\cos{(2\theta)}} = \tan \theta$ se $0 \leq \theta < \frac{\pi}{2}$
\item Se $\frac{\pi}{2} < \theta < \pi$, para qual(is) valor(es) de
$\theta$ a identidade na questão a) não é verdadeira?
\end{enumerate}
\end{exercise}
% Question 3
\begin{exercise}{College Trigonometry, Aufmann}{}
Prove a identidade $$\frac{\text{tg} x}{1-\cot x}+\frac{\cot
x}{1-\text{tg} x}=\sec x \text{cosec} x + 1$$
\end{exercise}
\begin{exercise}{}{}
Mostre que $\frac{\text{sen} x +
\text{sen}{(3x)}+\text{sen}{(5x)}}{\cos x +
\cos{(3x)}+\cos{(5x)}}=\text{tg}{3x}$ para todo $x$ para o qual
$\text{tg}{(3x)}$ é definida.
\end{exercise}
\begin{exercise}{}{}
Se $f\left(\frac{x}{x-1}\right)=\frac{1}{x}$ para
todo $x\neq 0,1,$ e $0<\theta<\frac{\pi}{2}$, então encontre
$f(\sec^2\theta)$.
\end{exercise}
\begin{exercise}{New York State Mathematics League}{}
Encontre
$A$ tal que $0^\circ < A < 90^\circ$ e $\cos 41^\circ + \sin 41^\circ
= \sqrt2 \sin A$.
\end{exercise}
\end{document}