我试图复制它,但我找不到制作这些“子表”的方法,任何帮助都是有用的!
\documentclass[10pt]{article}
\usepackage[spanish]{babel}
\usepackage{amsmath, amssymb, amsthm, tikz}
\usepackage[margin=1in]{geometry}
\usepackage[shortlabels]{enumitem}
\usetikzlibrary{babel}
\begin{document}
\begin{center}
\begin{table}[!h]
\centering
\begin{tabular}{|p{0.25\textwidth}|p{0.25\textwidth}|p{0.25\textwidth}|p{0.25\textwidth}|}
\hline
Importa el orden & Estan todos & Se repiten & Formula \\
\hline
Si &
\begin{tabular}{|p{0.99\textwidth}|}
\hline
No \\
\hline
Si \\
\hline
\end{tabular} &
\begin{tabular}{|p{0.99\textwidth}|}
\hline
No \\
\hline
Si \\
\hline
No \\
\hline
Si \\
\hline
\end{tabular} &
\begin{tabular}{|p{0.99\textwidth}|}
\hline
$\displaystyle A_{n}^{m} =\frac{m!}{( m-n) !}$ \\
\hline
$\displaystyle AR_{n}^{m} =m^{n}$ \\
\hline
$\displaystyle P_{n} =n!$ \\
\hline
$\displaystyle PR_{n}^{\alpha _{1} ,\alpha _{2} ,.\dotsc ,\alpha _{m}} =\frac{m!}{\alpha _{1} !\alpha _{2} !\dotsc \alpha _{m} !}$ \\
\hline
\end{tabular} \\
\hline
No & &
\begin{tabular}{|p{0.99\textwidth}|}
\hline
No \\
\hline
Si \\
\hline
\end{tabular} &
\begin{tabular}{|p{0.99\textwidth}|}
\hline
$\displaystyle \mathbb{C}_{n}^{m} =\frac{m!}{( m-n) !n!}$ \\
\hline
$\displaystyle \mathbb{C} R=\mathbb{C}_{n}^{m+n-1}$ \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\end{table}
\end{center}
\end{document}
答案1
我使用该multirow
包和一些cline
来模拟您所提到的“子表”。
这是我的代码
\documentclass[10pt]{article}
\usepackage[spanish]{babel}
\usepackage{amsmath, amssymb, amsthm, tikz}
\usepackage[margin=1in]{geometry}
\usepackage[shortlabels]{enumitem}
\usetikzlibrary{babel}
\usepackage{multirow}
\begin{document}
\begin{table}[!h] \centering
\begin{tabular}{|c|c|c|c|}\hline
Importa el orden & Están todos & Se repiten & Ta. To. Tabulado \\\hline
\multirow{4}{*}{Sí} & \multirow{2}{*}{No} & No & $ A_n^m = \frac{m!}{(m-n)!}$\\\cline{3-4}
&& Sí& $ AR_n^m = m^n$\\\cline{2-4}
&\multirow{2}{*}{Sí} & No & $ P_n = n!$\\\cline{3-4}
& & Sí&$ PR_n^{\alpha_1, \alpha_2, \cdots, a_m} = \frac{n!}{\alpha_1!\alpha_2!\cdots\alpha_m!}$\\\hline
\multirow{2}{*}{No} & & No & $ \mathbb{C}_n^m = \frac{n!}{m!(n-m)!}$\\\cline{3-4}
&& Sí & $\mathbb{C}R_n^m = \mathbb{C}^{m+n-1}_{n}$\\\hline
\end{tabular}
\end{table}
\end{document}