这是我想要排版成 LaTeX 的数学问题和答案:
我正在使用align*
环境来排版所有内容,这是我使用的代码:
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\begin{document}
\begin{align*}
&\text{\textbf{Find the limit of} }\mathbf{\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}}\text{\textbf{:}}\\
&=\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}\\
&=\frac{(\infty)^3-7(\infty)-6(\infty)-17}{(\infty)^4-8}\\
&\\
&\text{Since this is an }\frac{\infty}{\infty}\text{ limit, we can use L`H}\hat{o}\text{pital's rule}\\
&\frac{dy}{dx}(x^3-7x^2+6x-17) &&\frac{dy}{dx}(x^4-8) &\longrightarrow\text{ L`H}\hat{o}\text{pital's rule:}\\
&=3x^2-14x+6 && =4x^3 &\text{1st attempt}\\
&\\
&\text{Since this is still an }\frac{\infty}{\infty}\text{ limit, we can repeatedly use L`H}\hat{o}\text{pital's rule until we get to a result:}\\
&\frac{dy}{dx}(3x^2-14x+6) &&\frac{dy}{dx}(4x^3) &\longrightarrow\text{ L`H}\hat{o}\text{pital's rule:}\\
&=6x-14 && =12x^2 &\text{2nd attempt}\\
&\frac{dy}{dx}(6x-14) &&\frac{dy}{dx}(12x^2) &\longrightarrow\text{ L`H}\hat{o}\text{pital's rule:}\\
&=6 && =24x &\text{3rd attempt}\\
&\\
&\text{Now we have:}\\
&\lim_{x\to\infty}\frac{6}{24x}\\
&=\frac{6}{24(\infty)}\\
&=\frac{6}{\infty}\\
&=0
\end{align*}
\end{document}
然而,问题在于我的方程式超出了页面范围,而且我不确定如何修复它。
笔记:这些数学图像来自旧的作业,而这项数学作业的 LaTeX 排版是我目前正在做的作业。
答案1
这个布局适合您吗?
笔记amsfonts
:加载时无需加载amssymb
– 后者已经为您完成了。
\documentclass{article}
\usepackage{mathtools}
\usepackage{amssymb, bm}
\begin{document}
\begin{align*}
\shortintertext{\bfseries{Find the limit of} $\displaystyle \bm{\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}} $ :}
&=\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}\\
&=\frac{(\infty)^3-7(\infty)-6(\infty)-17}{(\infty)^4-8}\\
\intertext{Since this is an $\frac{\infty}{\infty}$, we can use L'Hôpital's rule}
&\frac{dy}{dx}(x^3-7x^2+6x-17) &&\frac{dy}{dx}(x^4-8) &\longrightarrow\text{ L`Hôpital's rule:}\\
&=3x^2-14x+6 && =4x^3 &\text{1st attempt}\\
\intertext{Since this is still an $\frac{\infty}{\infty}$, we can repeatedly use L'Hôpital's rule until we get to a result:}
&\frac{dy}{dx}(3x^2-14x+6) &&\frac{dy}{dx}(4x^3) &\longrightarrow\text{ L`Hôpital's rule:}\\
&=6x-14 && =12x^2 &\text{2nd attempt}\\
&\frac{dy}{dx}(6x-14) &&\frac{dy}{dx}(12x^2) &\longrightarrow\text{ L`Hôpital's rule:}\\
&=6 && =24x &\text{3rd attempt}\\
\intertext{Now we have:}
&\lim_{x\to\infty}\frac{6}{24x}\\
&=\frac{6}{24(\infty)}\\
&=\frac{6}{\infty}\\
&=0
\end{align*}
\end{document}
答案2
基于多重嵌套数学环境和左对齐方程的解决方案
\documentclass{article}
\usepackage{array}
\usepackage[fleqn]{mathtools}
\usepackage{amssymb}
\usepackage{bm}
\setlength{\parindent}{0pt}
\newcommand\prelen{\hspace{15pt}}
\newlength\eqskip \setlength\eqskip{9pt} % skips at tries
\begin{document}
\textbf{Find the limit of} \(\displaystyle \mathbf{\bm{\lim}_{x\to\infty} \frac{x^3-7x^2+6x-17}{x^4-8}}\):
\begin{align*}
&\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8} \\
&\prelen=\ \lim_{x\to\infty}
\frac{(\infty)^3-7(\infty)-6(\infty)-17}{(\infty)^4-8} \\
&\prelen=\ \frac{\infty}{\infty}
\end{align*}
Since this is an \(\displaystyle \frac{\infty}{\infty}\) limit, we can use L'Hôpital's rule:
\begin{align*}
\begin{aligned}
\frac{dy}{dx}\bigl(x^3-7x^2+6x-17\bigr) \\
=\ 3x^2-14x+6
\end{aligned}
& \hspace{3em}
\begin{aligned} % {r @{\hspace{3em}} r}
\frac{dy}{dx}\bigl(x^4-8\bigr) \\
=\ 4x^3
\end{aligned}
\end{align*}
Since this is still an \(\displaystyle \frac{\infty}{\infty}\) limit, we can repeatedly use L'Hôpital's rule until we get to a result:
\begin{align*}
\begin{aligned}
&\frac{dy}{dx}(3x^2-14x+6) \\
& \prelen=\ 6x - 14 \\[\eqskip]
&\frac{dy}{dx}(6x - 14) \\
& \prelen=\ 6
\end{aligned}
&& \begin{aligned}
& \frac{dy}{dx}(4x^3)
& \quad\longrightarrow
&&& \smash{\begin{tabular}{l}
{L'Hôpital's rule} \\
(2nd try)
\end{tabular}} \\
& \prelen=\ 12x^2 \\[\eqskip]
& \frac{dy}{dx}(12x^2)
& \quad\longrightarrow
&&& \smash{\begin{tabular}{l}
{L'Hôpital's rule} \\
(3rd try)
\end{tabular}} \\
& \prelen=\ 24x
\end{aligned}
\end{align*}
Now we have:
\begin{align*}
\lim_{x\to\infty}\,\frac{6}{24x}\ &=\ \frac{6}{24(\infty)} \\
& =\ \frac{6}{\infty} \\
& =\ 0
\end{align*}
\end{document}
答案3
这里有很多可疑的代码,所以我最好只给你一个修正版本,而不是列出所有更改。简而言之,试图将整个结构强行合并为一个align
会让你的生活变得非常困难,因为这不是环境设计的目的。我不会谈论将算术运算应用于无穷符号,除了这是一种可憎的行为。我会考虑创建一个宏\mathrm{d}
并用它来代替微分运算符中的普通“d”。
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\begin{document}
Find the limit of
\(\displaystyle\mathbf{\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}}\):
\begin{align*}
\lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}
&= \lim_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}\\
&=\frac{(\infty)^3-7(\infty)-6(\infty)-17}{(\infty)^4-8}.
\end{align*}
Since this is an \(\infty/\infty\) limit, we can use L'H\^opital's rule:
\begin{align*}
&\frac{dy}{dx}(x^3-7x^2+6x-17) &\frac{dy}{dx}(x^4-8)&&\longrightarrow\text{L'H\^opital's rule:}\\
& \quad =3x^2-14x+6 &\quad=4x^3 && \text{1st attempt}.
\end{align*}
Since this is still an \(\infty/\infty\) limit, we can repeatedly use L'H\^opital's rule until
we get to a result:
\begin{align*}
&\frac{dy}{dx}(3x^2-14x+6) &\frac{dy}{dx}(4x^3) &&\longrightarrow\text{L'H\^opital's rule:}\\
&\quad =6x-14 &\quad =12x^2 &&\text{2nd attempt}\\
&\frac{dy}{dx}(6x-14) &\frac{dy}{dx}(12x^2) &&\longrightarrow\text{L'H\^opital's rule:}\\
&\quad =6 &\quad =24x &&\text{3rd attempt}
\end{align*}
Now we have:
\begin{align*}
\lim_{x\to\infty}\frac{6}{24x}
&=\frac{6}{24(\infty)}\\
&=\frac{6}{\infty}\\
&=0
\end{align*}
\end{document}
答案4
我会这样写你的作业:
\documentclass{article}
\usepackage{mathtools}
\usepackage{amssymb}
\begin{document}
\noindent\textbf{Find the limit of $\mathbf{\lim\limits_{x\to\infty}\frac{x^3-7x^2+6x-17}{x^4-8}}$ :}
\begin{align*}
\lim_{x\to\infty}\frac{x^3 - 7x^2+6x - 17}{x^4 - 8}
& = \frac{(\infty)^3 - 7(\infty)-6(\infty)-17}{(\infty)^4 - 8} \\
\intertext{Since this is an $\frac{\infty}{\infty}$ limit, we can use L'Hôpital's rule}
\frac{dy}{dx}(x^3 - 7x^2+6x - 17)
& = 3x^2 - 14x + 6
& \longrightarrow\quad \parbox[t]{7em}{L'Hôpital's rule:\\
1st attempt} \\
\frac{dy}{dx}(x^4 - 8)
& = 4x^3
\intertext{Since this is still an $\frac{\infty}{\infty}$ limit, we can repeatedly use L'Hôpital's rule rule until we get the final result:}
\frac{dy}{dx}(3x^2-14x+6)
& = 6x - 14
& \longrightarrow\quad \parbox[t]{7em}{L'Hôpital's rule:\\
2nd attempt} \\
\frac{dy}{dx}(4x^3)
& =12x^2
\shortintertext{and}
\frac{dy}{dx}(6x-14)
& = 6
& \longrightarrow\quad \parbox[t]{7em}{L'Hôpital's rule:\\
3rd attempt} \\
\frac{dy}{dx}(12x^2)
& =24x \\
\intertext{Now we have:}
\lim_{x\to\infty}\frac{6}{24x}
& = \frac{6}{24(\infty)} = \frac{6}{\infty} \\
& = \boxed{ 0 }
\end{align*}
\end{document}