考虑以下:
\documentclass[12pt,a4paper,oneside]{book}
\usepackage{amsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs,amsmath}
\begin{document}
\begin{align*}
M_3&=\frac{(\mu(k)+\rho(k)+\xi(k))\left(\sigma_1^2(k)+2\int_M D_1^2(k,y)\nu(dy)\right)}{2M_1}S_k^{*^2}\\[1ex] &+\frac{(\mu(k)+\alpha(k)+\theta(k)+\gamma(k))\left(\sigma_2^2(k)+2\int_M D_2^2(k,y)\nu(dy)\right)}{2M_2}I_k^{*^2}\\[1ex]
&+\frac{2\mu(k)+\rho(k)+\xi(k)+\alpha(k)+\theta(k)+\gamma(k)}{2\beta(k)(1-\rho(k))(1-\xi(k))}\left[\sigma_2^2(k)\right.\\
&\left.+2\int_M (D_2(k,y)-\log(1+D_2(k,y))\nu(dy)) \right]I_k^*
\end{align*}
\end{document}
我如何才能使\left[
第 3 行中的“大”方括号与\right]
第 4 行中的大括号相匹配?
答案1
为了保留 的三个加法分量的分子项的成对内容M_3
,我建议您使用第 3 行分子包\splitdfrac
的宏。mathtools
另一个问题:我认为第 1 行和第 2 行中的术语S_k^{*^2}
和I_k^{*^2}
是错误的,因为指数2
太小。我相信{S_k^*}^2
和{I_k^*}^2
更好,因为指数将在数学模式中呈现,而不是在数学模式中2
呈现。\scriptstyle
\scriptscriptstyle
请注意,任何地方都没有\left
and的实例\right
。这是经过深思熟虑的。
\documentclass[12pt,a4paper,oneside]{book}
\usepackage{%amsfonts, %% amsfonts is loaded automatically by amssymb
graphicx, verbatim,
mathtools, % for '\splitdfrac' macro
amssymb, amsthm, mathrsfs,
%amsmath %% amsmath is loaded automatically by mathtools
}
\begin{document}
\begin{align*}
M_3
&=\frac{\bigl[\mu(k)+\rho(k)+\xi(k)\bigr]
\bigl[\sigma_1^2(k)+2\int_M D_1^2(k,y)\nu(dy)\bigr]}{%
2M_1} \, {S_k^*}^2 \\[1ex]
&\quad+
\frac{\bigl[\mu(k)+\alpha(k)+\theta(k)+\gamma(k)\bigr]
\bigl[\sigma_2^2(k)+2\int_M D_2^2(k,y)\nu(dy)\bigr]}{%
2M_2} \, {I_k^*}^2 \\[1ex]
&\quad+
\frac{\splitdfrac{\bigl[2\mu(k)+\rho(k)+\xi(k)
+\alpha(k)+\theta(k)+\gamma(k)\bigr]}
{\cdot\bigl[\sigma_2^2(k) +2\int_M
\bigl(D_2(k,y)-\log(1+D_2(k,y))\nu(dy) \bigr) \bigr]}}%
{2\beta(k)(1-\rho(k))(1-\xi(k))} \, I_k^* \\
\end{align*}
\end{document}
答案2
Mico
这个建议很好,但如果您仍然想按原样使用编码,请尝试以下操作:
使用left
和right
\documentclass[12pt,a4paper,oneside]{book}
\usepackage{amsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs,amsmath}
\begin{document}
\begin{align*}
M_3&=\frac{(\mu(k)+\rho(k)+\xi(k))\left(\sigma_1^2(k)+2\int_M D_1^2(k,y)\nu(dy)\right)}{2M_1}S_k^{*^2}\\[1ex]
&\quad +\frac{(\mu(k)+\alpha(k)+\theta(k)+\gamma(k))\left(\sigma_2^2(k)+2\int_M D_2^2(k,y)\nu(dy)\right)}{2M_2}I_k^{*^2}\\[1ex]
&\quad+\frac{2\mu(k)+\rho(k)+\xi(k)+\alpha(k)+\theta(k)+\gamma(k)}{2\beta(k)(1-\rho(k))(1-\xi(k))}\left[\vphantom{+2\int_M (D_2(k,y)-\log(1+D_2(k,y))\nu(dy))}\sigma_2^2(k)\right.\\
&\quad\left.+2\int_M (D_2(k,y)-\log(1+D_2(k,y))\nu(dy)) \right]I_k^*
\end{align*}
使用biggl
和biggr
\begin{align*}
M_3&=\frac{(\mu(k)+\rho(k)+\xi(k))\left(\sigma_1^2(k)+2\int_M D_1^2(k,y)\nu(dy)\right)}{2M_1}S_k^{*^2}\\[1ex]
&\quad +\frac{(\mu(k)+\alpha(k)+\theta(k)+\gamma(k))\left(\sigma_2^2(k)+2\int_M D_2^2(k,y)\nu(dy)\right)}{2M_2}I_k^{*^2}\\[1ex]
&\quad+\frac{2\mu(k)+\rho(k)+\xi(k)+\alpha(k)+\theta(k)+\gamma(k)}{2\beta(k)(1-\rho(k))(1-\xi(k))}\biggl[\sigma_2^2(k)\biggr.\\
&\quad\biggl.+2\int_M (D_2(k,y)-\log(1+D_2(k,y))\nu(dy)) \biggr]I_k^*
\end{align*}