答案1
你可以使用该multenum
包来排版图片显示的内容。从文档中,
\documentclass{article}
\usepackage{multienum}
\begin{document}
\begin{multienumerate}
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{Not}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)=
(\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}
\end{document}
输出如下
答案2
另一种方法是:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
\begin{split}
(a) & \lim\limits_{(x,y) \to (3,4)} \frac{2 - xy}{x^2 + y^2}, \\
(b) & \lim\limits_{(x,y) \to (1,0)} \frac{\ln(x + e^{y})}{\sqrt{x^2 + y^2}},
\end{split}
\quad \quad
\begin{split}
(c) & \lim\limits_{(x,y) \to (1,0)} \left(1 + \frac{1}{x}\right)^{x^2/(x+y)}, \\
(d) & \lim\limits_{(x,y) \to (0,0)} \frac{x y}{\sqrt{2 \, x^2 + y^2}},
\end{split}
\end{equation*}
\end{document}
本答案基于qubyte 的解决方案