关于中学教科书重要基本功能的问题

关于中学教科书重要基本功能的问题

我正在用 LaTeX 重新创建旧中学(欧洲)教科书表格,其中包含一些非常常见的函数(见下文)。如果有人认为我应该做一些改进或添加其他函数,我希望得到反馈,因为我还有空间可以添加一行(即 4 个函数)。

\begin{table}[H]
        \centering
        \begin{tabular}{|c|c|c|c|}
        \hline
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Constant}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, smooth, thick] { 2 };
          \end{axis}
        \end{tikzpicture} &
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={\LARGE Linear},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, smooth, thick] { x };
          \end{axis}
        \end{tikzpicture} & 
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={\LARGE Absolute Value},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, smooth, thick] { abs(x) };
          \end{axis}
        \end{tikzpicture} & 
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Quadratic}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, smooth, thick] { x^2 };
          \end{axis}
        \end{tikzpicture} \\
        $f(x)=c^{te}$ & $f(x)=x$ & $f(x)=|x|$ & $f(x)=x^2$\\ \hline
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Square root}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { sqrt(x) };
          \end{axis}
        \end{tikzpicture} & \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Cubic}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { x^3 };
          \end{axis}
        \end{tikzpicture} & \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Cube root}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { x^(2/3) };
          \end{axis}
        \end{tikzpicture} & 
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Inverse}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { 1/x };
          \end{axis}
        \end{tikzpicture} \\
        $f(x)=\sqrt{x}$ & $f(x)=x^3$ & $f(x)=\sqrt[3]{x}$ & $f(x)=\dfrac{1}{x}$\\ \hline
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Rational}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:-0.1, blue, samples=200, smooth, thick] { 1/x^2 };
            \addplot [domain=0.1:3, blue, samples=200, smooth, thick] { 1/x^2 };
          \end{axis}
        \end{tikzpicture}  & 
        \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Logarithmic}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=0.1:3, blue, samples=200, smooth, thick] { ln(x) };
          \end{axis}
        \end{tikzpicture}  & \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Exponential}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { e^x };
          \end{axis}
        \end{tikzpicture}  & \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Grestest Integer (step function)}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot +[thick, samples at={-3,-2,-1,...,2,3},
               jump mark left] {ceil(x+1)};
             \addplot  [thick, samples at={-2,-1,0,...,2,3}, only marks,
               mark options={draw=blue,fill=white}] {(x)};
          \end{axis}
        \end{tikzpicture}  \\
        $f(x)=\dfrac{1}{x^2}$ & $f(x)=\ln(x)$ & $f(x)=e^x$ & $f(x)=[x]$\\ \hline
        \multicolumn{1}{|c|}{\cellcolor[HTML]{EFEFEF}\begin{tabular}[c]{@{}c@{}}Trigonometric\\ Functions\end{tabular}} & \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Sine}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { sin(deg(pi*x)) };
          \end{axis}
        \end{tikzpicture} & \begin{tikzpicture}[scale=0.45]
          \begin{axis} [axis lines=center,
          title={{\LARGE Cosine}},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
            \addplot [domain=-3:3, blue, samples=200, smooth, thick] { cos(deg(pi*x)) };
          \end{axis}
        \end{tikzpicture} & \begin{tikzpicture}[scale=0.45]
        \begin{axis}[%
            axis lines=middle,
            title={{\LARGE Tangent}},
            axis on top,
            xlabel=$x$,
            ylabel=$y$,
            domain=-2*pi:2*pi,
            xmin=-7,
            xmax=7,
            ymin=-5,
            ymax=5,
            trig format plots=rad, %<- 
            xtick={-2*pi,-3*pi/2, -pi, -pi/2,pi/2,pi,3*pi/2,2*pi},
            xticklabels={$-2\pi$, $-\frac{3\pi}{2}$, $-\pi$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$,$\pi$,$\frac{3\pi}{2}$,$2\pi$},
            every axis y label/.style={rotate=0, black, at={(0.5,1.05)},},
            every axis x label/.style={rotate=0, black, at={(1.05,0.5)},},,
            font=\footnotesize,     
         ]
        \pgfplotsinvokeforeach{-5,-3,...,3}{
        \pgfmathsetmacro{\xmin}{ifthenelse(#1==-5,-2*pi,#1*pi/2+0.01)}
        \pgfmathsetmacro{\xmax}{ifthenelse(#1==3,2*pi,#1*pi/2+pi-0.01)}
        \addplot[samples=51,smooth,blue,domain=\xmin:\xmax]{tan(x)};
        \draw[densely dotted] (#1*pi/2,\pgfkeysvalueof{/pgfplots/ymin})
         -- (#1*pi/2,\pgfkeysvalueof{/pgfplots/ymax});
        }
        \end{axis}
        \end{tikzpicture} \\ 
        \cellcolor[HTML]{EFEFEF} $\rightarrow$ & $f(x)=\sin(x)$ & $f(x)=\cos(x)$ & $f(x)=\tan(x)$
         \\ \hline
        \end{tabular}
    \end{table}

在此处输入图片描述

感谢您的反馈意见

答案1

就 LaTeX 代码效率而言,我的主要建议是创建一个可用于 15 张图片中的 13 张的宏;请参阅\mypic下面代码中的宏以获取如何执行此操作的示例。

仍然在 LaTeX 代码效率的话题上,我建议您使用环境array而不是tabular环境。这将允许您摆脱大量$符号,从而减少代码混乱。而且,通过降低值\arraycolsep,可以增加选项的值scale;您的读者可能会喜欢这一点。

就图形准确性而言,我认为水平轴上的标记对于正弦和余弦函数来说看起来不太正确。您可能需要了解如何在正切函数的情况下处理 x 轴标记。

最后,关于整体美观,请考虑去掉所有垂直线和水平线——它们是不需要的,而且不会被忽略。

在此处输入图片描述

\documentclass{article} % or some other suitable document class
\usepackage[a4paper,margin=2.5cm]{geometry} % set page parameters as needed
\usepackage{colortbl,array,mathtools,tikz,pgfplots}

% Typographic strut, for use in final pic:
\newcommand\mystrut{\vphantom{\frac12}} 
% The following macro is used in 13 of the 15 pics below:
\newcommand\mypic[3][]{%
  \begin{tikzpicture}[scale=0.52]
      \begin{axis} [axis lines=center,
        title={\LARGE #2},
        xmin=-3,xmax=3,
        ymin=-3,ymax=3,
        ytick={-3,-2,...,3}]
      \addplot [domain=-3:3, blue, #1, smooth, thick] { #3 };
      \end{axis}
  \end{tikzpicture}%
}

\begin{document}
\begin{table}[ht!]
\setlength\arraycolsep{1pt} % default: 5pt
\centering
$\begin{array}{@{} cccc @{}}
%\hline
  \mypic{Constant}{2} &
  \mypic{Linear}{x} & 
  \mypic{Absolute Value}{abs(x)} & 
  \mypic{Quadratic}{x^2} \\
  f(x)=\mbox{const.} & f(x)=x & f(x)=|x| & f(x)=x^2 \\[3ex]
%\hline
  \mypic{Square root}{sqrt(x)} & 
  \mypic{Cubic}{x^3} & 
  \mypic{Cube root}{x^(2/3)} & 
  \mypic[samples=200]{Inverse}{1/x} \\
  f(x)=\sqrt{x} & f(x)=x^3 & f(x)=\sqrt[3]{x} & f(x)=1/x \\[3ex] 
%\hline
  \mypic{Rational}{1/x^2} & 
  \mypic{Natural Logarithm}{ln(x)} & 
  \mypic{Exponential}{e^x} & 
  \begin{tikzpicture}[scale=0.52]
      \begin{axis} [axis lines=center,
          title={\LARGE Greatest Integer (step function)},
          xmin=-3,xmax=3,
          ymin=-3,ymax=3,
          ytick={-3,-2,...,3}]
      \addplot +[thick, samples at={-3,-2,-1,...,2,3},
               jump mark left] {ceil(x+1)};
      \addplot  [thick, samples at={-2,-1,0,...,2,3}, only marks,
               mark options={draw=blue,fill=white}] {(x)};
      \end{axis}
  \end{tikzpicture}  \\
  f(x)=1/x^2 & f(x)=\ln(x) & f(x)=e^x & f(x)=\lceil x\rceil \\[3ex]
%\hline
  \cellcolor[HTML]{EFEFEF}
  \begin{tabular}{@{}c@{}}Trigonometric\\Functions\end{tabular} & 
  \mypic{Sine}{sin(deg(pi*x))} & 
  \mypic{Cosine}{cos(deg(pi*x))} & 
  \begin{tikzpicture}[scale=0.52]
      \begin{axis}[%
      axis lines=middle,
      title={\LARGE Tangent},
      %axis on top,
      %xlabel=$x$,
      %ylabel=$y$,
      domain=-2*pi:2*pi,
      xmin=-6.5,xmax=6.5,
      ymin=-5,ymax=5,
      trig format plots=rad, %<- 
      xtick={-2*pi,-3*pi/2,-pi,-pi/2,pi/2,pi,3*pi/2,2*pi},
      xticklabels={$\mathllap{-}2\pi\mystrut$, $-\frac{3}{2}\pi$,$-\pi\mystrut$,  $-\frac{1}{2}\pi$, 
                   $\frac{1}{2}\pi$,$\pi\mystrut$,    $\frac{3}{2}\pi$,$2\pi\mystrut$},
      every axis y label/.style={rotate=0, black, at={(0.5,1.05)},},
      every axis x label/.style={rotate=0, black, at={(1.05,0.5)},},,
      ytick={-5,-2.5,...,5},
      %font=\footnotesize
      ]
      \pgfplotsinvokeforeach{-5,-3,...,5}{
        \pgfmathsetmacro{\xmin}{ifthenelse(#1==-5,-2*pi,#1*pi/2+0.01)}
        \pgfmathsetmacro{\xmax}{ifthenelse(#1==3,2*pi,#1*pi/2+pi-0.01)}
        \addplot[samples=51,smooth,blue,domain=\xmin:\xmax,thick]{tan(x)};
        \draw[densely dotted] (#1*pi/2,\pgfkeysvalueof{/pgfplots/ymin})
         -- (#1*pi/2,\pgfkeysvalueof{/pgfplots/ymax});
      }
      \end{axis}
  \end{tikzpicture} \\ 
  \cellcolor[HTML]{EFEFEF} \rightarrow & 
  f(x)=\sin(x) & f(x)=\cos(x) & f(x)=\tan(x) \\ 
%\hline
\end{array}$
\end{table}
\end{document}

相关内容