增加表格的字体,同时使其适合页面

增加表格的字体,同时使其适合页面

我在文章中插入了表格,但字体太小。如何在不影响表格比例的情况下增加字体?我尝试了不同的方法,但表格超出了页面。

我的表格如下图所示:

在此处输入图片描述

'''

    \begin{table}[h]
\centering
\caption{Comparative Study in The Related Work of Sentiment Analysis}
\normalsize
\resizebox{\textwidth}{!}{
\begin{tabular}{lllllll} 
\hline
\multirow{2}{*}{\textbf{Ref.}}                         & \multirow{2}{*}{\textbf{Language}}      & \multicolumn{2}{c}{\textbf{Dataset}}                                             & \multirow{2}{*}{\textbf{algorithm}}            & \multirow{2}{*}{\textbf{Polarity}}                                                                     & \multirow{2}{*}{\begin{tabular}[c]{@{}l@{}}\textbf{Performance}\\\textbf{( Acc.)}\end{tabular}}  \\\cline{3-4}
                                                       &                                         & \textbf{Name/Types}                                   & \textbf{Size}            &                                                &                                                                                                        &                                                                                                  \\ 
\hline
\multirow{2}{*}{\cite{AlSalman2020}}                       & \multirow{2}{*}{Arabic}                 & \multirow{2}{*}{Tweets}                               & \multirow{2}{*}{2000}    & \multirow{2}{*}{Discriminative multinomial NB} & Positive                                                                                               & \multirow{2}{*}{87.50\%}                                                                         \\
                                                       &                                         &                                                       &                          &                                                & Negative                                                                                               &                                                                                                  \\
\addlinespace
\multirow{3}{*}{\cite{IKAUNIECE2018}}                      & \multirow{3}{*}{Spanish and Catalan}    & \multirow{3}{*}{Student feedback}                     & \multirow{3}{*}{2925}    & \multirow{2}{*}{SVM}                           & Positive                                                                                               
& \multirow{2}{*}{71\%}                                                                            \\
                                                       &                                         &                                                       &                          &                                                & Negative                                                                                               &                                                                                                  \\
                                                       &                                         &                                                       &                          & Logistic regression                            & neutral                                                                                                & 72\%                                                                                             \\
\addlinespace
\multirow{3}{*}{\cite{Sengkey2019}}  & \multirow{3}{*}{Indonesian and English} & \multirow{3}{*}{Student feedback documents}           & \multirow{3}{*}{636}     & \multirow{3}{*}{SVM}                           & Positive                                                                                               & \multirow{3}{*}{74\%}                                                                            \\
                                                       &                                         &                                                       &                          &                                                & Negative                                                                                               &                                                                                                  \\
                                                       &                                         &                                                       &                          &                                                & neutral                                                                                                &                                                                                                  \\
\addlinespace
\multirow{3}{*}{(\cite{Kamiş}}             & \multirow{3}{*}{English}                & \multirow{3}{*}{SemEval}                              & \multirow{3}{*}{32000}   & CNN                                            & Positive                                                                                               & \multirow{3}{*}{59\% on CNN +LSTM}                                                               \\
                                                       &                                         &                                                       &                          & LSTM                                           & Negative                                                                                               &                                                                                                  \\
                                                       &                                         &                                                       &                          & CNN + LSTM                                     & neutral                                                                                                &                                                                                                  \\
\addlinespace
\multirow{2}{*}{\cite{Munna2020}}   & \multirow{2}{*}{Bangla}                 & \multirow{2}{*}{Online shops reviews}                 & \multirow{2}{*}{5109}    & \multirow{2}{*}{DNN}                           & Good,  Bad                                                                                             & 84\%                                                                                             \\
                                                       &                                         &                                                       &                          &                                                & \begin{tabular}[c]{@{}l@{}}Complain\\Recommended\\Wrong delivery Appreciation\end{tabular}             & 69\%                                                                                             \\
\addlinespace
\multirow{2}{*}{\cite{Al-Bayati}} & \multirow{2}{*}{Arabic}                 & \multirow{2}{*}{LABR}                                 & \multirow{2}{*}{14448}   & \multirow{2}{*}{LSTM}                          & 0                                                                                                      & \multirow{2}{*}{82\%}                                                                            \\
                                                       &                                         &                                                       &                          &                                                & 1                                                                                                      &                                                                                                  \\
\addlinespace
\multirow{4}{*}{\cite{Al-Hassan}}       & \multirow{4}{*}{Arabic}                 & \multirow{4}{*}{Tweets}                               & \multirow{4}{*}{11000}   & LSTM                                           & \multirow{4}{*}{\begin{tabular}[c]{@{}l@{}}none, religious\\racial, sexism\\general hate\end{tabular}} & \multirow{4}{*}{72\% on LSTM + CNN}                                                              \\
                                                       &                                         &                                                       &                          & LSTM+CNN                                       &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & GRU                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & GRU+CNN                                        &                                                                                                        &                                                                                                  \\
\addlinespace
\multirow{10}{*}{\cite{Onan2020}}                          & \multirow{10}{*}{English}               & \multirow{10}{*}{Student feedback}                    & \multirow{10}{*}{154000} & NB                                             & \multirow{10}{*}{\begin{tabular}[c]{@{}l@{}}Positive\\~Negative\end{tabular}}                          & \multirow{10}{*}{98.29\% on RNN}                                                                 \\
                                                       &                                         &                                                       &                          & SVM                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & LR                                             &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & KNN                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & FR                                             &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & CNN                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & RNN                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & RNN-AM                                         &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & GRU                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & LSTM                                           &                                                                                                        &                                                                                                  \\
\addlinespace
\multirow{4}{*}{\cite{Alshutayri}}              & \multirow{4}{*}{Arabic}                 & \multirow{4}{*}{Tweets}                               & \multirow{4}{*}{32186}   & NB                                             & \multirow{4}{*}{\begin{tabular}[c]{@{}l@{}}Positive\\~Negative\\~Neutral\end{tabular}}                 & \multirow{4}{*}{70\% on LSTM}                                                                    \\
                                                       &                                         &                                                       &                          & Logistic regression                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & SVM                                            &                                                                                                        &                                                                                                  \\
                                                       &                                         &                                                       &                          & LSTM                                           &                                                                                                        &                                                                                                  \\
\addlinespace
\multirow{5}{*}{\cite{Chouikhi2021}}  & \multirow{5}{*}{Arabic}                 & ASTD                                                  & 10K                      & \multirow{5}{*}{Arabic BERT}                   & \begin{tabular}[c]{@{}l@{}}Pos,Neg\\Neu,Mix\end{tabular}                                               & 91\%                                                                                             \\
                                                       &                                         & HARD                                                  & 93.7k                    &                                                & Pos,Neg,Neu                                                                                            & 95\%                                                                                             \\
                                                       &                                         & LABR                                                  & 63k                      &                                                & 0,1                                                                                                    & 87\%                                                                                             \\
                                                       &                                         & AJGT                                                  & 1800                     &                                                & Pos, neg                                                                                               & 96.60\%                                                                                          \\
                                                       &                                         & ArSenTD-Lev                                           & 4000                     &                                                & Used 3 classes of 5                                                                                    & 75\%                                                                                             \\
\addlinespace
\multirow{5}{*}{\cite{Alsuhemi2022}}                & \multirow{5}{*}{Arabic}                 & \multirow{5}{*}{restaurant, movies, products reviews} & \multirow{5}{*}{7686}    & LR                                             & \multirow{5}{*}{\begin{tabular}[c]{@{}l@{}}Positive\\Negative\end{tabular}}                            & 83\%                                                                                             \\
                                                       &                                         &                                                       &                          & RF                                             &                                                                                                        & 82\%                                                                                             \\
                                                       &                                         &                                                       &                          & NB                                             &                                                                                                        & 84\%                                                                                             \\
                                                       &                                         &                                                       &                          & SVM                                            &                                                                                                        & 83\%                                                                                             \\
                                                       &                                         &                                                       &                          & araBERT                                        &                                                                                                        & 82\%                                                                                             \\
\addlinespace
\cite{ElMoubtahij}                & Arabic                                  & ARev                                                  & 40K                      & araBERT                                        & \begin{tabular}[c]{@{}l@{}}Positive\\Negative\end{tabular}                                             & 92.50\%                                                                                          \\
\hline
\end{tabular}}
\end{table}

'''

艾德特 当我编辑表格时,我遇到了这个问题,单元格的内容不适合单元格,例如: 在此处输入图片描述

\begingroup
\small\linespread{0.9}\selectfont
\sisetup{group-minimum-digits=4}
    \begin{longtblr}[
caption = {Comparative Study in The Related Work of Sentiment Analysis},
  label = {RW},
                    ]{colsep  = 4pt,
                      colspec = {@{} l  X[0.8, l]  X[1.2, l] Q[c, si={table-format=6.0}]
                                       X[1.2, l]       X[l] X[0.8, l] @{}},
                     row{1,2}= {guard, font=\footnotesize\bfseries},
                     rowsep  = 4pt,
                     rowhead = 2
                    }
    \toprule
\SetCell[r=2]{l}    Ref. 
    &   \SetCell[r=2]{l}    Language 
        &   \SetCell[c=2]{c}    Dataset
            &   &    \SetCell[r=2]{l}Algorithm
                    &   \SetCell[r=2]{l}    Polarity
                        &   \SetCell[r=2]{l}    Performance (Acc.)      
                                                    \\
    \cmidrule[lr]{3-4}
    &   &   Name/Types 
            &   Size 
                &   &   &                           \\ 
    \midrule
\cite{AlSalman2020}
    &   Arabic 
        &   Tweets 
            &   2000 
                &   Discriminative multinomial NB 
                    & {Positive\\ Negative} 
                        &   \qty{87.5}{\percent}    \\
\cite{IKAUNIECE2018}
    &   Spanish and Catalan
        &   Student feedback
            &   2925
                &   {SVM\\  Logistic regression} 
                    &   {Positive\\ Negative\\ neutral} 
                        &   {\qty{71}{\percent}\\
                             \qty{72}{\percent}}    \\
\cite{Sengkey2019}
    &   Indonesian and English 
        &   Student feedback documents 
            &   636 
                &   SVM 
                    &   {Positive\\ Negative\\ neutral} 
                        &   \qty{74}{\percent}      \\
\cite{Kamiş} 
    &   English
        &   SemEval
            &   32000
                &   {CNN\\  LSTM\\ CNN + LSTM}
                    &   {Positive\\ Negative\\ neutral} 
                        &   \qty{59}{\percent}  on CNN + LSTM   
                                                    \\
\cite{Munna2020} 
    &   Bangla
        &   Online shops reviews
            &   5109
                &   DNN
                    &   {Good,\\  Bad} 
                        &  \qty{84}{\percent}       \\
    &   &   &   &   &   Complain, Recommended Wrong  delivery, Appreciation
                        &   \qty{69}{\percent}      \\

\cite{Al-Bayati}
    &   Arabic 
        &   LABR 
            &   14448 
                &   LSTM 
                    &   {0\\ 1} 
                        &   \qty{82}{\percent}      \\
\cite{Al-Hassan} 
    &   Arabic
        &   Tweets
            &   11000
                &   LSTM, LSTM+CNN, GRU, GRU+CNN
                    &   {none, religious,\\  racial, sexism,\\  general hate}
                        &   \qty{72}{\percent} on LSTM + CNN    
                                                    \\

\cite{Onan2020} 
    &   English
        &   Student feedback
            &   154000
                &   NB, SVM, LR, KNN, FR, CNN, RNN, RNN-AM,  GRU, LSTM
                    &   {Positive,\\ Negative} 
                        &    \qty{98.29}{\percent} on RNN     
                                                    \\
\cite{Alshutayri} 
    &   Arabic
        &   Tweets
            &   32186
                &   NB, Logistic regression, SVM, LSTM
                    &   {Positive,\\ Negative,\\ Neutral}
                        &   \qty{70}{\percent} on LSTM 
                                                    \\
\cite{Chouikhi2021} 
    &   Arabic
        &   {ASTD\\ HARD\\ LABR\\ AJGT\\ ArSenTD\\ Lev}
            &   {10K\\ 93.7K\\ 63K\\ 1800\\\ 4000}
                &   Arabic BERT
                    &   {Pos, Neg, Neu, Mix\\ pos, neg, neu\\0, 1\\ pos, neg \\ used 3 classes from 5 } 
                        &  { \qty{91}{\percent}\\ 95\%\\ 87\%\\96.6\%\\ 75\% }
                                             \\
 \cite{Alsuhemi2022}
       & Arabic
          & restaurant, movies, products reviews
              & 7686
                    & {LR\\ RF\\ NB\\ SVM\\ araBERT}
                         & positive, negative
                                & {83\% \\ 82\% \\ 84\% \\ 83\% \\ 82\%}
                                                                     \\

\cite{ElMoubtahij}
           & Arabic
                & ARev
                     & 40000
                         & araBERT
                              & poditive, negative
                                         & 92.5\%   \\
      \bottomrule
    \end{longtblr}
\endgroup

答案1

  • 您的表格中的代码很容易丢失...而且表格的图像质量很差,因此无法从中读取数据。
  • 因此,我编辑了表格的前 11 行。在此过程中,我可能会误解某些行的归属。特别是因为表格代码不一致
  • 无论如何,下面的 MWE 可以作为如何编辑表格其余部分的骨架和示例:
\documentclass{article}
\usepackage[margin=25mm]{geometry}
\usepackage[skip=1ex,
            font=small, labelfont=bf]{caption}      
\usepackage{tabularray}
\UseTblrLibrary{booktabs, siunitx}

\begin{document}
    \begin{table}[ht]
    \caption{Mx wide table}
    \label{tab:my-table}
\small\linespread{0.9}\selectfont
\sisetup{group-minimum-digits=4}
\begin{tblr}{colspec = {@{} l  X[0.8, l,m]  X[1.2, l,m] Q[c, si={table-format=6.0}] 
                               X[1.2, l,m]       X[l,m] X[0.8, l,m] @{}},
             row{1,2}= {guard, font=\footnotesize\bfseries, m},
             rowsep  = 4pt
             }
    \toprule
\SetCell[r=2]{l}    Ref. 
    &   \SetCell[r=2]{l}    Language 
        &   \SetCell[c=2]{c}    Dataset
            &   &    \SetCell[r=2]{l}Algorithm
                    &   \SetCell[r=2]{l}    Polarity
                        &   \SetCell[r=2]{l}    Performance (Acc.)      
                                                    \\
    \cmidrule[lr]{3-4}
    &   &   Name/Types 
            &   Size 
                &   &   &                           \\ 
    \midrule
\cite{AlSalman 2020}
    &   Arabic 
        &   Tweets 
            &   2000 
                &   Discriminative multinomial NB 
                    & {Positive\\ Negative} 
                        &   \qty{87.5}{\percent}    \\
\cite{IKAUNIECE 2018}
    &   Spanish and Catalan
        &   Student feedback
            &   2925
                &   {SVM\\  Logistic regression} 
                    &   {Positive\\ Negative\\ neutral} 
                        &   {\qty{71}{\percent}\\
                             \qty{72}{\percent}}    \\
\cite{Sengkey, Jacobus, and Manoppo 2019}
    &   Indonesian and English 
        &   Student feedback documents 
            &   636 
                &   SVM 
                    &   {Positive\\ Negative\\ neutral} 
                        &   \qty{74}{\percent}      \\
\cite{Kamiş and Goularas 2019} 
    &   English
        &   SemEval
            &   32000
                &   {CNN\\  LSTM\\ CNN + LSTM}
                    &   {Positive\\ Negative\\ neutral} 
                        &   \qty{59}{\percent}  on CNN + LSTM   
                                                    \\
\cite{Munna, Rifat, and Badrudduza 2020} 
    &   Bangla
        &   Online shops reviews
            &   5109
                &   DNN
                    &   {Good,\\  Bad} 
                        &  \qty{84}{\percent}       \\
    &   &   &   &   &   Complain, Recommended Wrong  delivery, Appreciation
                        &   \qty{69}{\percent}      \\

\cite{Al-Bayati, Al-Araji, and Ameen 2020}
    &   Arabic 
        &   LABR 
            &   14448 
                &   LSTM 
                    &   {0\\ 1} 
                        &   \qty{82}{\percent}      \\
\cite{Al-Hassan and Al-Dossari 2021} 
    &   Arabic
        &   Tweets
            &   11000
                &   LSTM, LSTM+CNN, GRU, GRU+CNN
                    &   {none, religious,\\  racial, sexism,\\  general hate}
                        &   \qty{72}{\percent} on LSTM + CNN    
                                                    \\

\cite{Onan 2020} 
    &   English
        &   Student feedback
            &   154000
                &   NB, SVM, LR, KNN, FR, CNN, RNN, RNN-AM,  GRU, LSTM
                    &   {Positive,\\ Negative} 
                        &    \qty{98.29}{\percent} on RNN     
                                                    \\
\cite{Alshutayri et al. n.d.} 
    &   Arabic
        &   Tweets
            &   32186
                &   NB, Logistic regression, SVM, LSTM
                    &   {Positive,\\ Negative,\\ Neutral}
                        &   \qty{70}{\percent} on LSTM 
                                                    \\
\cite{Chouikhi, Chniter, and Jarray 2021} 
    &   Arabic
        &   ASTD 
            &   10000
                &   Arabic BERT
                    &   Positive, Negative, Neutral, Mix 
                        &   \qty{9}{\percent}   \\
    \bottomrule
\end{tblr}
    \end{table}
\end{document}

在此处输入图片描述

编辑(1):

  • 如果您的表格长度超过一页,则需要将其替换tblrlongtblr
\documentclass{article}
\usepackage[margin=25mm]{geometry}

\usepackage[skip=1ex,
            font=small, labelfont=bf]{caption}
\usepackage{tabularray}
\UseTblrLibrary{booktabs, siunitx}

\begin{document}
    \begingroup
\small\linespread{0.9}\selectfont
\sisetup{group-minimum-digits=4}
    \begin{longtblr}[
caption = {Comparative Study in The Related Work of Sentiment Analysis},
  label = {tab:my-table},
                    ]{colsep  = 4pt,
                      colspec = {@{} l  X[0.8, l]  X[1.2, l] Q[c, si={table-format=6.0}]
                                       X[1.2, l]       X[l] X[0.8, l] @{}},
                     row{1,2}= {guard, font=\footnotesize\bfseries},
                     rowsep  = 4pt,
                     rowhead = 2
                    }
    \toprule
\SetCell[r=2]{l}    Ref.
    &   \SetCell[r=2]{l}    Language
        &   \SetCell[c=2]{c}    Dataset
            &   &    \SetCell[r=2]{l}Algorithm
                    &   \SetCell[r=2]{l}    Polarity
                        &   \SetCell[r=2]{l}    Performance (Acc.)
                                                    \\
    \cmidrule[lr]{3-4}
    &   &   Name/Types
            &   Size
                &   &   &                           \\
    \midrule
%% table body
\cite{AlSalman 2020}
    &   Arabic
        &   Tweets
            &   2000
                &   Discriminative multinomial NB
                    & {Positive\\ Negative}
                        &   \qty{87.5}{\percent}    \\
\cite{IKAUNIECE 2018}
    &   Spanish and Catalan
        &   Student feedback
            &   2925
                &   {SVM\\  Logistic regression}
                    &   {Positive\\ Negative\\ neutral}
                        &   {\qty{71}{\percent}\\
                             \qty{72}{\percent}}    \\
\cite{Sengkey, Jacobus, and Manoppo 2019}
    &   Indonesian and English
        &   Student feedback documents
            &   636
                &   SVM
                    &   {Positive\\ Negative\\ neutral}
                        &   \qty{74}{\percent}      \\
\cite{Kamiş and Goularas 2019}
    &   English
        &   SemEval
            &   32000
                &   {CNN\\  LSTM\\ CNN + LSTM}
                    &   {Positive\\ Negative\\ neutral}
                        &   \qty{59}{\percent}  on CNN + LSTM
                                                    \\
\cite{Munna, Rifat, and Badrudduza 2020}
    &   Bangla
        &   Online shops reviews
            &   5109
                &   DNN
                    &   {Good,\\  Bad}
                        &  \qty{84}{\percent}       \\
    &   &   &   &   &   Complain, Recommended Wrong  delivery, Appreciation
                        &   \qty{69}{\percent}      \\

\cite{Al-Bayati, Al-Araji, and Ameen 2020}
    &   Arabic
        &   LABR
            &   14448
                &   LSTM
                    &   {0\\ 1}
                        &   \qty{82}{\percent}      \\
\cite{Al-Hassan and Al-Dossari 2021}
    &   Arabic
        &   Tweets
            &   11000
                &   LSTM, LSTM+CNN, GRU, GRU+CNN
                    &   {none, religious,\\  racial, sexism,\\  general hate}
                        &   \qty{72}{\percent} on LSTM + CNN
                                                    \\

\cite{Onan 2020}
    &   English
        &   Student feedback
            &   154000
                &   NB, SVM, LR, KNN, FR, CNN, RNN, RNN-AM,  GRU, LSTM
                    &   {Positive,\\ Negative}
                        &    \qty{98.29}{\percent} on RNN
                                                    \\
\cite{Alshutayri et al. n.d.}
    &   Arabic
        &   Tweets
            &   32186
                &   NB, Logistic regression, SVM, LSTM
                    &   {Positive,\\ Negative,\\ Neutral}
                        &   \qty{70}{\percent} on LSTM
                                                    \\
\cite{Chouikhi, Chniter, and Jarray 2021}
    &   Arabic
        &   ASTD
            &   10000
                &   Arabic BERT
                    &   Positive, Negative, Neutral, Mix
                        &   \qty{9}{\percent}       \\
\cite{Alsuhemi2022}
    &   Arabic
        &   restaurant, movies, products reviews
            &   7686
                &   {LR\\ RF\\ NB\\ SVM\\ araBERT}
                    &   {positive\\Negative}                            
                        &   {\qty{83}{\percent} \\
                             \qty{82}{\percent} \\  
                             \qty{84}{\percent} \\  
                             \qty{83}{\percent} \\  
                             \qty{82}{\percent}}    \\   
\cite{ElMoubtahij}                
    & Arabic 
        & ARev 
            & 40000 
                & araBERT 
                    &   {Positive\\ Negative}                                             
                        &   \qty{92.50}{\percent}   \\  
    \bottomrule
    \end{longtblr}
\endgroup
\end{document}
  • 在上面的 MWE 中,我添加了您问题中编辑的表中的其余行。
  • 由于使用的\small字体大小和缩小的linespread尺寸,表格可以在一页中写满,但如果您的表格仍然有更多行,它现在被设计为长表格,可以分布在多个页面上。
  • 长表格不应包含在˙table浮动元素中。如果包含在浮动元素中,则长表格不会在页面之间断开,但会超出页面底部。
  • 为了最终获得进一步的帮助,您需要告知我(我们)以下信息:
    • 使用两个 MWE 生成的表格格式是否符合您的要求(第一个 MWE(最小工作示例)生成垂直居中的单元格列,第二个 MWE 的内容顶部对齐)?
    • 在评论中你说你遇到了一些错误,但不清楚是否有建议的解决方案或将其插入到你的文档中
    • 你遇到了什么错误?

笔记:请(再次)始终提供完整、简短但完整的文档,以便我们按原样编译。通过此文档,您可以告知我们页面布局、您使用的(与问题相关的)软件包等。

在此处输入图片描述

编辑(2):

  • 显然我们说的不是同一种语言,因为到目前为止我对你的猜测是错误的……
  • 所以我仍然不确定我是否正确地理解了你想告诉我的内容。例如,细胞
NB, SVM, LR, KNN, FR, CNN, RNN, RNN-AM,  GRU, LSTM

您喜欢缩短彼此之间的距离。

  • 这很容易实现:
{NB\\ SVM\\ LR\\ KNN\\ FR\\ CNN\\ RNN\\ RNN-AM\\  GRU\\ LSTM}
  • 您应该在所有其他单元格中执行相同的操作,以便以相同的方式书写缩写。我留给您做的是表格代码的更改。
  • 经过这次修正后,您的表格(正如您提供有问题的代码)仍然可以放在一页上:

在此处输入图片描述

答案2

我想您的查询标题“增加字体[大小]”可以改为“停止减小字体大小”,因为认真减小字体大小正是这样\resizebox做的。简而言之:\resizebox除非您暗自鄙视您的论文的读者,否则不要使用。

由于 7 列中的 6 列似乎需要自动换行,并且表格的长度恰好超过一页,因此我建议您从常规tabular环境切换到xltabular环境,并在必要时允许换行。本质上,xltabular环境是longtable知道X列类型的环境。

下面的截图显示了表格的前几行。

在此处输入图片描述

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[margin=1in,letterpaper]{geometry}
\usepackage{xltabular,ragged2e,booktabs}
\newcolumntype{L}{>{\RaggedRight\hspace{0pt}}X}

\begin{document}

\begingroup % limit scope of next instruction to current TeX group
\setlength\tabcolsep{4pt} % default value: 6pt
\begin{xltabular}{\textwidth}{@{} LLL l LLL @{}}
\caption{Table caption\strut} \label{tab:my-table} \\
\toprule
  Reference & Language & \multicolumn{2}{c}{Dataset} & Algorithm & Polarity & Performance (Acc.) \\ 
  \cmidrule(lr){3-4}
  & & Name\slash Types & Size \\ 
  \midrule
  \endfirsthead
  
  \multicolumn{5}{@{}l}{Table \thetable, cont'd}\\[0.5ex]
  \toprule
  Reference & Language & \multicolumn{2}{c}{Dataset} & Algorithm & Polarity & Performance (Acc.) 
  \\ 
  \cmidrule(lr){3-4}
  & & Name\slash Types & Size \\ 
  \midrule
  \endhead
  
  \midrule
  \multicolumn{7}{r@{}}{\footnotesize (continued on following page)}\\
  \endfoot
  
  \bottomrule
  \endlastfoot
  
  
  AlSalman (2020) & Arabic & Tweets & 2000 & Discriminative multinomial NB & Positive\slash Negative & 87.5\% \\ 
  \addlinespace
  IKAUNIECE (2018) & Spanish and Catalan & Student feedback & 2925 & SVM & Positive\slash Negative\slash neutral & 71\ \\
  & & & & Logistic regression & & 72\% \\ 
  \addlinespace
  Sengkey, Jacobus, and Manoppo (2019) & Indonesian and English & Student feedback documents & 636 & SVM & Positive\slash Negative \newline neutral & 74\% \\ 
  \addlinespace
  Kamiş and Goularas (2019) & English & SemEval & 32000 & CNN & Positive\slash Negative\slash neutral & 59\% on CNN+LSTM \\
  & & & & LSTM & & \\
  & & & & CNN + LSTM & & \\ 
  \addlinespace
  Munna, Rifat, and Badrudduza (2020) & Bangla & Online shops reviews & 5109 & DNN & Good, Bad & 84\% \\
  & & & & & Complain, Recommended, Wrong  delivery, Appreciation & 69\% \\ 
  \addlinespace
  Al-Bayati, Al-Araji, and Ameen (2020) & Arabic & LABR & 14448 & LSTM & 0, 1 & 82\% \\ 
  \addlinespace
  Al-Hassan and Al-Dossari (2021) & Arabic & Tweets & 11000 & LSTM & none, religious, racial, sexism, general hate & 72\% on LSTM + CNN \\
  & & & & LSTM+CNN & & \\
  & & & & GRU & & \\
  & & & & GRU+CNN & & \\ 
  \addlinespace
  Onan (2020) & English & Student feedback & 154000 & NB & Positive, Negative & 98.29\% on RNN \\
  & & & & SVM & & \\
  & & & & LR  & & \\
  & & & & KNN & & \\
  & & & & FR  & & \\
  & & & & CNN & & \\
  & & & & RNN & & \\
  & & & & RNN-AM & & \\
  & & & & GRU & & \\
  & & & & LSTM & & \\ 
  \addlinespace
  Alshutayri et~al.\ (n.d.) & Arabic & Tweets & 32186 & NB &
  Positive, Negative, Neutral & 70\% on LSTM \\
  & & & & Logistic regression & & \\
  & & & & SVM  & & \\
  & & & & LSTM & & \\ 
  \addlinespace
  Chouikhi, Chniter, and Jarray (2021) & Arabic & ASTD & 10K & Arabic BERT & Pos, Neg, Neu, Mix & 91\% \\
  & & HARD & 93.7k & & Pos, Neg, Neu & 95\% \\
  & & LABR & 63k & & 0, 1 & 87\% \\
  & & AJGT & 1800 & & Pos, neg & 96.6\% \\
  & & ArSenTD-Lev & 4000 & & Used 3 classes of 5 & 75\% \\ 
  \addlinespace
  Alsuhemi et~al.\ (2022) & Arabic & restaurant, movies, product reviews & 7686 & LR & Positive, Negative & 83\% \\
  & & & & RF & & 82\% \\
  & & & & NB & & 84\% \\
  & & & & SVM & & 83\% \\
  & & & & araBERT & & 82\% \\  
  \addlinespace
  el Moubtahij, Abdelali, and Tazi (2022) & Arabic & ARev & 40K & araBERT & Positive, negative & 92.5\% \\
  
\end{xltabular}
\endgroup % cf. "\begingroup" directive above

\end{document}

相关内容