我正在尝试绘制函数 y=4/pi * arccos(x/4) 和 2-sqrt(x)(见图)。这来自 AP Central。我无法确定要使用哪个合适的轴来显示这两个图像。我可以毫无困难地绘制平方根函数,但尝试添加反三角函数却让我感到困惑。
任何帮助都将不胜感激。我尝试用 Google 搜索,但没有找到。
\documentclass[11pt,letterpaper]{article}
\usepackage[utf8]{inputenc}
\usepackage{adjustbox}
\usepackage{fullpage}
\usepackage[top=2cm, bottom=4.5cm, left=2.5cm, right=2.5cm]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,amscd}
\usepackage{multicol}
\usepackage{enumerate}
\usepackage{fancyhdr}
\usepackage{tikz}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\usepackage{amssymb}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{plotmarks}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes.misc, positioning}
\usetikzlibrary{arrows,shapes,positioning,snakes}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{arrows.meta,bending}
\tikzset{font=\footnotesize}
\setlength{\parindent}{0.0in}
\setlength{\parskip}{0.05in}
\newcommand*{\dprime}{^{\prime\prime}\mkern-1.2mu}
\newcommand*{\trprime}{^{\prime\prime\prime}\mkern-1.2mu}
% Edit these as appropriate
\newcommand\course{AP Calculus AB}
\pagestyle{fancy}
\headheight 35pt
\lhead{Mark Sparks}
\chead{\textbf{Topic 8.5 Finding the Area Between Curves \\ Expressed as Functions of \(x\) }}
\rhead{\course \\ \today}
\lfoot{Mr. Bennett}
\cfoot{Flint Hill Upper School}
\rfoot{\small\thepage}
\headsep 1.5em
\renewcommand{\baselinestretch}{1.5}
\renewcommand{\arraystretch}{1.5}
\begin{document}
\subsection*{AP Test Preparation}
\begin{center}
\begin{tikzpicture}[scale=.75]
\begin{axis}[thick,
scale only axis,
grid=major,
axis lines=middle,
inner axis line style={-Triangle},
ytick={-1,0,...,3},
xtick={-1,0,...,5},
ymin=-1,
ymax=3,
xmin=-1,
xmax=5,
]
\addplot[thick,samples=1000,domain=0:4]{2-sqrt(x)};
\addplot[thick,samples=1000,domain=0:4]{1.27324*acos(x/4)
\node at (2,1){\(R\)};
\end{axis}
\end{tikzpicture}
\end{center}
\begin{enumerate}
\item Let \(R\) be the region in the first quadrant bounded above by the graph of \(y=\dfrac{4}{\pi}\cos^{-1}\left(\dfrac{x}{4}\right)\) and below by the graph of \(y=2-\sqrt{x}\), as shown in the figure above. What is the area of the region?
A. \(\dfrac{4}{3}\) \\
B. \(\dfrac{16}{\pi}+\dfrac{8}{3}\) \\
C. \(\dfrac{16}{\pi}-\dfrac{8}{3}\) \\
D. \(\dfrac{16}{3}\) \\
\rule{\textwidth}{.5pt}
\end{enumerate}
\end{document}
答案1
我认为你的代码有2个错误。
首先,\addplot[thick,samples=1000,domain=0:4]{1.27324*acos(x/4)
您错过了闭合的括号和半柱};
。
其次,该acos
函数以度为单位返回结果。因此 acos(0) 返回 90。如果结果以弧度为单位,则将其乘以 pi/180。正如您将 (4/pi) * acos(x) 一样,并且 (pi/180) * (4/pi) 为 1/45(约 0.02222),因此,只需替换
\addplot[thick,samples=1000,domain=0:4]{1.27324*acos(x/4)
经过
\addplot[thick,samples=1000,domain=0:4]{0.02222*acos(x/4)};
您将获得: