修改 OP 代码以插入\task*
强制在任务环境中向左对齐的一行文本。(h/t @JohnKormylo)
但我需要关闭下面两行文本的枚举:
(注:此测试键有几个部分不是按顺序编号。这就是为什么我没有将它们创建为正式的副标题。一个失误?)
另一个问题关于解决方案步骤之间的行距。使用\bigskip
(定义)是否是\def\bigskip{\vskip\bigskipamount}
创建垂直空间以增强各个解决方案步骤的可读性的最有效方法?
非常感谢您花时间审阅/回复这篇文章。
姆韦
\documentclass[12pt]{exam}
\printanswers
% un-comment to print solutions.
\renewcommand{\solutiontitle}{}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{framed}
\usepackage{multicol}
\usepackage{tasks}
\usepackage[a4paper,margin=0.5in,include head]{geometry}
\pagestyle{head}
%Note: \& forces & to be literal character
\header{Algebra II: Unit 11 Quiz (Rational Expressions \& Equations)}
{}
{Due 04/07/23}
\newcommand{\pagetop}{%
\noindent
\bigskip
\vspace{0.5mm}
}
\settasks{after-item-skip=1em,
after-skip=2cm,
label-width=1.5em, %<---------
item-indent=2em, %<---------
label=(\arabic*),
column-sep=1em %<----------
}
\begin{document}
%definition for bigskip = 1 line to replace all \bigskip
\def\bigskip{\vskip\bigskipamount}
\textbf{1-2 Simplify each expression.}
\begin{tasks}
[style=enumerate](2)
% Prob #1
\task $\dfrac{4x+12}{x^2+5x+6}$
\\
\begin{solutionorbox}[3cm]
$\dfrac{4(x+3)}
{(x+3)(x+2)}$
\bigskip
$\dfrac{4\cancel{(x+3)}}{\cancel{(x+3)}(x+2)} = \boldsymbol{\dfrac{4}{x+2}}$
\end{solutionorbox}
\vspace{0.25cm}
% Prob #2
\task $\dfrac{x^2+3x+2}{x^2-4}$
\bigskip
\begin{solutionorbox}[5cm]
$\dfrac{(x+2)(x+1)}{(x+2)(x-2)}$
\bigskip
$\dfrac{\cancel{(x+2)}}{\cancel{x+2}(x-2)} = \boldsymbol{\dfrac{x+1}{x-2}}$
\bigskip
\end{solutionorbox}
\vspace{0.25cm}
\textbf{3-4: Multiply or divide. Simply.}
% Prob #3
\task $\dfrac{p^2-7p+10}{p^2-25}$
\bigskip
\begin{solutionorbox}[5cm]
Factor both numerator and denominator. Notice numerator is a perfect square.
\bigskip
$\dfrac{(p-5)(p-2)}{(p+5)(p-5)}$
\bigskip
$\dfrac{{\cancel{(p-5)}}(p-2)}{{(p+5)\cancel{(p-5)}}}=\boldsymbol{\dfrac{p-2}{p+5}}$
\end{solutionorbox}
\vspace{0.25cm}
% Prob #4
\task $\dfrac{n^2+6n-7}{n^2+14n+49}$
\bigskip
\begin{solutionorbox}[5cm]
Factor both numerator and denominator.
\bigskip
$\dfrac{(n+7)(n-1)}{(n+7)(n+7)}$
\bigskip
Cancel factors.
\bigskip
$\dfrac{{\cancel{(n+7)}(n-1)}}{\cancel{(n+7)}(n+7)}=\boldsymbol{\dfrac{n-1}{n+7}}$
\end{solutionorbox}
\vspace{0.25cm}
% Prob #5
\task $\dfrac{7}{k+7}\boldsymbol{\cdot} \dfrac{k^2+9k+18}{k+3}$
\bigskip
\begin{solutionorbox}[5cm]
Factor both numerator and denominator.
\bigskip
$\dfrac{(n+7)(n-1)}{(n+7)(n+7)}$
\bigskip
Cancel factors.
\bigskip
$\dfrac{{\cancel{(n+7)}(n-1)}}{\cancel{(n+7)}(n+7)}=\boldsymbol{\dfrac{n-1}{n+7}}$
\end{solutionorbox}
\vspace{0.25cm}
\end{tasks}
\end{document}
答案1
请注意,这\fullwidth
是关于缩进,而不是列。 \globalcounter*
防止每列有单独的问题编号。 \switcholumn*
对齐下一组列的顶部。
\documentclass[12pt]{exam}
\printanswers
% un-comment to print solutions.
\renewcommand{\solutiontitle}{}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{framed}
%\usepackage{multicol}
\usepackage{paracol}
\globalcounter*
\usepackage[a4paper,margin=0.5in,include head]{geometry}
\pagestyle{head}
%Note: \& forces & to be literal character
\header{Algebra II: Unit 11 Quiz (Rational Expressions \& Equations)}
{}
{Due 04/07/23}
\newcommand{\pagetop}{%
\noindent
\bigskip
\vspace{0.5mm}
}
\begin{document}
%definition for bigskip = 1 line to replace all \bigskip
\def\bigskip{\vskip\bigskipamount}
\begin{questions}
\fullwidth{\textbf{1-2 Simplify each expression.}}
\begin{paracol}{2}
% Prob #1
\question $\dfrac{4x+12}{x^2+5x+6}$
\\
\begin{solutionorbox}[3cm]
$\dfrac{4(x+3)}
{(x+3)(x+2)}$
\bigskip
$\dfrac{4\cancel{(x+3)}}{\cancel{(x+3)}(x+2)} = \boldsymbol{\dfrac{4}{x+2}}$
\end{solutionorbox}
\switchcolumn
% Prob #2
\question $\dfrac{x^2+3x+2}{x^2-4}$
\bigskip
\begin{solutionorbox}[5cm]
$\dfrac{(x+2)(x+1)}{(x+2)(x-2)}$
\bigskip
$\dfrac{\cancel{(x+2)}}{\cancel{x+2}(x-2)} = \boldsymbol{\dfrac{x+1}{x-2}}$
\bigskip
\end{solutionorbox}
\switchcolumn*[\fullwidth{\textbf{3-4: Multiply or divide. Simply.}}]
%\end{paracol}% alternate version
%\fullwidth{\textbf{3-4: Multiply or divide. Simply.}}
%\begin{paracol}{2}
% Prob #3
\question $\dfrac{p^2-7p+10}{p^2-25}$
\bigskip
\begin{solutionorbox}[5cm]
Factor both numerator and denominator. Notice numerator is a perfect square.
\bigskip
$\dfrac{(p-5)(p-2)}{(p+5)(p-5)}$
\bigskip
$\dfrac{{\cancel{(p-5)}}(p-2)}{{(p+5)\cancel{(p-5)}}}=\boldsymbol{\dfrac{p-2}{p+5}}$
\end{solutionorbox}
\switchcolumn
% Prob #4
\question $\dfrac{n^2+6n-7}{n^2+14n+49}$
\bigskip
\begin{solutionorbox}[5cm]
Factor both numerator and denominator.
\bigskip
$\dfrac{(n+7)(n-1)}{(n+7)(n+7)}$
\bigskip
Cancel factors.
\bigskip
$\dfrac{{\cancel{(n+7)}(n-1)}}{\cancel{(n+7)}(n+7)}=\boldsymbol{\dfrac{n-1}{n+7}}$
\end{solutionorbox}
\switchcolumn*
\question $\dfrac{7}{k+7}\boldsymbol{\cdot} \dfrac{k^2+9k+18}{k+3}$
\bigskip
\begin{solutionorbox}[5cm]
Factor both numerator and denominator.
\bigskip
$\dfrac{(n+7)(n-1)}{(n+7)(n+7)}$
\bigskip
Cancel factors.
\bigskip
$\dfrac{{\cancel{(n+7)}(n-1)}}{\cancel{(n+7)}(n+7)}=\boldsymbol{\dfrac{n-1}{n+7}}$
\end{solutionorbox}
\vspace{0.25cm}
\end{paracol}
\end{questions}
\end{document}