我用dmath*
它来自动剪切表达式并更正格式。例如,我有以下公式
7+\frac{1}{\epsilon ^2}+\frac{3-G(0,x)}{\epsilon }-3 G(0,x)+G(0,0,x)+\epsilon \left(-7 G(0,x)+3 G(0,0,x)-G(0,0,0,x)+\frac{1}{3} (45-8
\zeta (3))\right)+\epsilon ^2 \left(7 G(0,0,x)-3 G(0,0,0,x)+G(0,0,0,0,x)+\frac{1}{30} \left(930-\pi ^4-240 \zeta (3)\right)-\frac{1}{3}
G(0,x) (45-8 \zeta (3))\right)+\epsilon ^3 \left(-7 G(0,0,0,x)+3 G(0,0,0,0,x)-G(0,0,0,0,0,x)-\frac{1}{30} G(0,x) \left(930-\pi ^4-240
\zeta (3)\right)+\frac{1}{3} G(0,0,x) (45-8 \zeta (3))+\frac{1}{30} \left(1890-3 \pi ^4-560 \zeta (3)-192 \zeta
(5)\right)\right)+\epsilon ^4 \left(7 G(0,0,0,0,x)-3 G(0,0,0,0,0,x)+G(0,0,0,0,0,0,x)+\frac{1}{30} G(0,0,x) \left(930-\pi ^4-240 \zeta
(3)\right)-\frac{1}{3} G(0,0,0,x) (45-8 \zeta (3))+\text{S1890} \left(240030-441 \pi ^4-20 \pi ^6-75600 \zeta (3)+6720 \zeta
(3)^2-36288 \zeta (5)\right)-\frac{1}{30} G(0,x) \left(1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\right)\right)+\epsilon ^5 \left(-7
G(0,0,0,0,0,x)+3 G(0,0,0,0,0,0,x)-G(0,0,0,0,0,0,0,x)-\frac{1}{30} G(0,0,0,x) \left(930-\pi ^4-240 \zeta (3)\right)+\frac{1}{3}
G(0,0,0,0,x) (45-8 \zeta (3))-\text{S1890} \left(G(0,x) \left(240030-441 \pi ^4-20 \pi ^6-75600 \zeta (3)+6720 \zeta (3)^2-36288 \zeta
(5)\right)\right)+\frac{1}{30} G(0,0,x) \left(1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\right)+\frac{1}{630} \left(160650-315 \pi ^4-20
\pi ^6-52080 \zeta (3)+56 \pi ^4 \zeta (3)+6720 \zeta (3)^2-28224 \zeta (5)-11520 \zeta (7)\right)\right)
下列的
\documentclass[a4paper,11pt]{article}
\usepackage{jheppub} % for details on the use of the package, please see the JINST-author-manual
\usepackage{lineno}
\usepackage{tikz}
\usepackage[compat=1.0.0]{tikz-feynman}
\usepackage{tikz}
\usetikzlibrary{shapes.geometric, arrows}
\tikzstyle{startstop} = [rectangle, rounded corners, minimum width=3cm, minimum height=1cm,text centered, draw=black, fill=gray!30]
\tikzstyle{arrow} = [thick,->,>=stealth]
\usepackage{amsmath}
\usepackage{breqn}
%\linenumbers
\begin{document}
\centering
\begin{dmath*}
7+\frac{1}{\epsilon ^2}+\frac{3-G(0,x)}{\epsilon }-3 G(0,x)+G(0,0,x)+\epsilon \left(-7 G(0,x)+3 G(0,0,x)-G(0,0,0,x)+\frac{1}{3} (45-8
\zeta (3))\right)+\epsilon ^2 \left(7 G(0,0,x)-3 G(0,0,0,x)+G(0,0,0,0,x)+\frac{1}{30} \left(930-\pi ^4-240 \zeta (3)\right)-\frac{1}{3}
G(0,x) (45-8 \zeta (3))\right)+\epsilon ^3 \left(-7 G(0,0,0,x)+3 G(0,0,0,0,x)-G(0,0,0,0,0,x)-\frac{1}{30} G(0,x) \left(930-\pi ^4-240
\zeta (3)\right)+\frac{1}{3} G(0,0,x) (45-8 \zeta (3))+\frac{1}{30} \left(1890-3 \pi ^4-560 \zeta (3)-192 \zeta
(5)\right)\right)+\epsilon ^4 \left(7 G(0,0,0,0,x)-3 G(0,0,0,0,0,x)+G(0,0,0,0,0,0,x)+\frac{1}{30} G(0,0,x) \left(930-\pi ^4-240 \zeta
(3)\right)-\frac{1}{3} G(0,0,0,x) (45-8 \zeta (3))+\text{S1890} \left(240030-441 \pi ^4-20 \pi ^6-75600 \zeta (3)+6720 \zeta
(3)^2-36288 \zeta (5)\right)-\frac{1}{30} G(0,x) \left(1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\right)\right)+\epsilon ^5 \left(-7
G(0,0,0,0,0,x)+3 G(0,0,0,0,0,0,x)-G(0,0,0,0,0,0,0,x)-\frac{1}{30} G(0,0,0,x) \left(930-\pi ^4-240 \zeta (3)\right)+\frac{1}{3}
G(0,0,0,0,x) (45-8 \zeta (3))-\text{S1890} \left(G(0,x) \left(240030-441 \pi ^4-20 \pi ^6-75600 \zeta (3)+6720 \zeta (3)^2-36288 \zeta
(5)\right)\right)+\frac{1}{30} G(0,0,x) \left(1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\right)+\frac{1}{630} \left(160650-315 \pi ^4-20
\pi ^6-52080 \zeta (3)+56 \pi ^4 \zeta (3)+6720 \zeta (3)^2-28224 \zeta (5)-11520 \zeta (7)\right)\right)
\end{dmath*}
\end{document}
dmath*
给出
每条线从一个角开始。我希望每条线居中,这样看起来会更好。具体来说,我希望
但\begin{center}
不起作用。该怎么办?
答案1
我建议您从 a 环境切换dmath*
到 an环境,并按、等到 来对align*
术语进行分组。进行此更改的缺点是您需要做更多工作;具体来说,您需要选择相当多的换行点。优点是您的文章的读者会发现解析材料要容易得多。\epsilon
\epsilon^2
\epsilon^5
\documentclass[a4paper,11pt]{article}
\usepackage{jheppub}
\usepackage{amsmath}
%\usepackage{lineno}
%\usepackage{tikz}
%\usepackage[compat=1.0.0]{tikz-feynman}
%\usepackage{tikz}
%\usetikzlibrary{shapes.geometric, arrows}
%\tikzstyle{startstop} = [rectangle, rounded corners, minimum width=3cm, minimum height=1cm,text centered, draw=black, fill=gray!30]
%\tikzstyle{arrow} = [thick,->,>=stealth]
\begin{document}
\begin{align*}
&7+\frac{1}{\epsilon ^2}+\frac{3-G(0,x)}{\epsilon }-3 G(0,x)+G(0,0,x) \\
&+\epsilon^{\phantom{1}}
\Bigl[-7 G(0,x)+3 G(0,0,x)-G(0,0,0,x)+\frac{1}{3} (45-8\zeta (3)) \Bigr] \\[\jot]
&+\epsilon ^2 \Bigl[
\begin{aligned}[t]
&7 G(0,0,x)-3 G(0,0,0,x) +G(0,0,0,0,x) \\
&+\frac{1}{30} \bigl(930-\pi ^4-240 \zeta (3)\bigr)
-\frac{1}{3} G(0,x) (45-8 \zeta (3)) \Bigr]
\end{aligned}\\
&+\epsilon ^3 \Bigl[
\begin{aligned}[t]
&-7 G(0,0,0,x)+3 G(0,0,0,0,x)-G(0,0,0,0,0,x)\\
&-\frac{1}{30} G(0,x) \bigl(930-\pi ^4-240 \zeta (3)\bigr) +\frac{1}{3} G(0,0,x) (45-8 \zeta (3))\\
&+\frac{1}{30}
\bigl(1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\bigr)\Bigr]
\end{aligned}\\
&+\epsilon ^4 \Bigl[
\begin{aligned}[t]
&7 G(0,0,0,0,x)-3 G(0,0,0,0,0,x) +G(0,0,0,0,0,0,x) \\
&+\frac{1}{30} G(0,0,x) \bigl(930-\pi ^4-240 \zeta(3)\bigr)
-\frac{1}{3} G(0,0,0,x) (45-8 \zeta (3))\\
&+\mathrm{S1890} \bigl[240030-441 \pi ^4-20 \pi ^6-75600 \zeta (3)+6720 \zeta (3)^2\\
&-36288 \zeta (5)\bigr]
-\frac{1}{30} G(0,x) \bigl(1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\bigr)\Bigr]
\end{aligned}\\
&+\epsilon ^5 \Bigl[
\begin{aligned}[t]
&-7 G(0,0,0,0,0,x) + 3 G(0,0,0,0,0,0,x) -G(0,0,0,0,0,0,0,x) \\
&-\frac{1}{30} G(0,0,0,x) \bigl[930-\pi ^4-240 \zeta (3)\bigr]
+\frac{1}{3}G(0,0,0,0,x) (45-8 \zeta (3))\\
&-\mathrm{S1890} \bigl[ G(0,x)
\bigl(240030-441 \pi ^4-20 \pi ^6-75600 \zeta (3)+6720 \zeta (3)^2\\
&-36288 \zeta (5)\bigr) \bigr]
+\frac{1}{30} G(0,0,x)
\bigl[1890-3 \pi ^4-560 \zeta (3)-192 \zeta (5)\bigr] \\
&+\frac{1}{630}
\bigl[160650 -315 \pi ^4-20 \pi ^6-52080 \zeta (3) +56 \pi ^4 \zeta (3) \\
&+6720 \zeta (3)^2-28224 \zeta (5)-11520 \zeta (7)\bigr]\Bigr]
\end{aligned}
\end{align*}
\end{document}