我在一篇双栏论文中写了一个很长的算法。我们这里遇到的问题是算法的长度超出了论文的长度。有什么解决方案可以帮助我解决这个问题吗?
感谢
\documentclass[conference]{IEEEtran}
\usepackage[commentsnumbered]{algorithm2e}
\begin{document}
\ IncMargin{1em}
\begin{algorithm}
\SetKwData{Left}{left}\SetKwData{This}{this}\SetKwData{Up}{up}
\SetKwFunction{Union}{Union}\SetKwFunction{FindCompress}{FindCompress}
\SetKwInOut{Input}{input}\SetKwInOut{Output}{output}
\Input{$\mathcal{G}_{1}$,$\mathcal{G}_{2}$,$\mathcal{G}_{g}$, $\eta_{I}^C$, $\eta_{1}^C$,$\eta_{2}^C$,$\eta_{G}^C$,$\boldsymbol \Psi$,U}
\Output{$\hat {\textbf{s}}_{g}$, $g=2,3,...,G$}
\BlankLine
\emph{Initialize: $j=0,q=1$,$\hat {\textbf{s}}_{g}={0}_{N \times k_{g}}$,$\varepsilon$}\
\For{$k < k_1$}{
\ $k=k+1$
\ Initialize $l=1$
\ $ \textbf{r}_1=\textbf{Y}^{cs}_1 (:|k)$
\While{$ \|\textbf{r}_{l} \|^{2}> \eta_{I} $}{
\ $ \psi=argmax_{(i=1,2,.,N)} (\boldsymbol \Psi^H (:|i)\textbf{r}_l)$
\ $\mathcal{B}_l=\{\psi+j|-U+1<j<U-1\}$
\ $\Sigma\mathcal{B}_{k}=\bigcup\limits_{p=1}^{\l} \mathcal{B}_p$
\ $l=l+1$
\ $\textbf{r}_l=(\textbf{I}-\boldsymbol \Psi(:|\Sigma \mathcal{B}_k) \boldsymbol \Psi^{\dagger} (:| \Sigma \mathcal{B}_k) ) \textbf{Y}^{cs}_{1} (:|k)$
}
}
\For{$ g<G $}{
\ $g=g+1$
\ $v= \mathcal{G}_g (1) $
\ $d= \mathcal{G}_g (1) $
\For{$ v<\mathcal{G}_g (\mathcal{G}_g |) $}{
\ $v=v+1$
\For{$ d<\mathcal{G}_g (\mathcal{G}_g | |)$}{
\ $d=d+1$
\ $ \{\textbf{A}^g_{(v|d)}\}=\Sigma \mathcal{B}_k \cap \Sigma \mathcal{B}_d $
\ $ [\textbf{Z}^g_{(v|d)}]=|[\textbf{A}^g]_{(v|d)} |$
\ $\textbf{R}^g_{(v|d)}=(\textbf{I}-\boldsymbol \Psi(:|\textbf{A}^g_{(v|d)})
\boldsymbol \Psi^{\dagger} (:| \textbf{A}^g_{(v|d)}) ) \textbf{Y}^{cs}_{g}$
\If{$ d<\mathcal{G}_g (\mathcal{G}_g | |)$}{
\ $[\textbf{N}^g_{(v|d)}]= ||\textbf{R}^g_{(v|d)}||_F^2$
}
}
}
\ $ \Gamma ^g=\{ d,v | [N^g_{(v|d)}] <min(N^g )\times\varepsilon\}$
\ $ \Omega^g=\{\textbf{A}^g (z) |\hspace{0.2 cm} z= min(\textbf{Z}^g [\Gamma^g ]) \}$
\If{$ g>1 $}{
\ $\Omega^g= \Omega^g $\backslash$ w^g $
}
\ $
\small{\textbf{C}^g=\left[
\begin{array}{c}
{\Omega^g (1)+j | 0\leq j\leq(U-1) } \\
\vdots & \\
{\Omega^g (|\Omega|-(U-1))+j | 0\leq j\leq(U-1) }
\end{array}
\right]
}$
\ $
\small{\textbf{p}^g=\left[
\begin{array}{c}
||(\textbf{I}-\boldsymbol \Psi(:|\textbf{C}^g_{(1|:)})
\boldsymbol \Psi^{\dagger} (:| \textbf{C}^g_{(1|:)}) ) \textbf{Y}^{cs}_{g}||_F^2 \\
\vdots & \\
||(\textbf{I}-\boldsymbol \Psi(:|\textbf{C}^g_{(|\Omega|-(U-1)|:)})
\boldsymbol \Psi^{\dagger} (:| \textbf{C}^g_{(|\Omega|-(U-1)|:)}) ) \textbf{Y}^{cs}_{g}||_F^2
\end{array}
\right]
}$
\ $
\small{\textbf{W}^g=\left[
\begin{array}{c}
\textbf{C}^g _{(m,:)} ;\textbf{C}^g _{(m+1,:} );...;\textbf{C}^g _{(H,:)} | \textbf{p}^g_m=min(\textbf{p}^g ),\textbf{p}^g_H=max(\textbf{p}^g)\\
\end{array}
\right]
}$
\ $Initialize: t=0$
\While{$ ||R||^2_{F}> \eta_{g}^C $}{
\ $\textbf{W}^g=\{\textbf{W}^g_{(1,:)},\textbf{W}^g_{(2,:)},...,\textbf{W}^g_{(|\Omega|-(U-1)-t|:)}\}$
\ $\textbf{R}=(\textbf{I}-\boldsymbol \Psi(:|\textbf{W}^g)
\boldsymbol \Psi^{\dagger} (:| \textbf{W}^g) ) \textbf{Y}^{cs}_{g}$
\ $t=t+1$
}
\ $L = ||R||_F^2$
\ $\mathcal{U}_{g}=\{ E=1,……,|w^g | \hspace{0.2 cm} |\hspace{0.2 cm}||(\textbf{I}-\boldsymbol \Psi_{(:|(\textbf{W}^g $\backslash$ \textbf{W}^g(E)} )\boldsymbol \Psi^{\dagger}_{(:|(\textbf{W}^g$\backslash$ \textbf{W}^g(E)} )
\w^g _(\mathcal{U}_{g})=\O
\ w^g=w^g \cap w^1$
}
\RTB
\For {$ q < G $}{
}
\end{algorithm}
\end{document}